Valence quark special distributions $(\xi=0)$

Two approaches

Goloskokov and Kroll (K Regali thesis)	Valence quark $\xi=0$
$\operatorname{GPD}(\xi, x, t)$ double distribution	$G P D(x, t)$ Parameterization
$(\operatorname{Lim} \xi \rightarrow 0)$	Diehl-Feldman-Jakob-Kroll-1-0408173.pdf
	et seq., e.g.
	Diehl and Kroll, -1302.4604
	Diehl-Hagler-0504175
	Kroll-Passek-Kumericki-1802.06597

Quote from Diehl-Feldman-Jakob-Kroll-1-0408173

- the low- x behavior of $f_{q}(x)$ should match the form (13), where we now impose the value $\alpha^{\prime}=$ $0.9 \mathrm{GeV}^{2}$ from Regge phenomenology,
- the high- x behavior should be controlled by the parameter A_{q} in (15) and not by α^{\prime},
- the intermediate x-region should smoothly interpolate between the two limits, with a few additional parameters providing enough flexibility to enable a good fit to the form factor data.

We found these requirements to be satisfied by the forms

$$
\begin{equation*}
f_{q}(x)=\alpha^{\prime}(1-x)^{2} \log \frac{1}{x}+B_{q}(1-x)^{2}+A_{q} x(1-x) \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{q}(x)=\alpha^{\prime}(1-x)^{3} \log \frac{1}{x}+B_{q}(1-x)^{3}+A_{q} x(1-x)^{2} \tag{29}
\end{equation*}
$$

which respectively correspond to $n=1$ and $n=2$ in (15). At large x, the individual terms behave like $\alpha^{\prime}(1-x)^{n+2}, B_{q}(1-x)^{n+1}$ and $A_{q}(1-x)^{n}$, which in particular prevents the term with α^{\prime} from being too important in the high- x region.

Goloskokov and Kroll (K Regali thesis) $\operatorname{GPD}(\xi, x, t)$ double distribution
$(\operatorname{Lim} \xi \rightarrow 0)$

Valence quark $(\xi=0)$ Parameterization Kroll-Passek-Kumericki-1802.06597 M. Diehl and P. Kroll, -1302.4604

Goloskokov-Kroll-Regali
Kroll-Passek-Kumericki ___

Valence quark $(\xi=0)$ Parameterization Kroll-Passek-Kumericki-1802.06597 from PK handout - 2018

Regali (consistent with GK 2008)
$(\operatorname{Lim} \xi \rightarrow 0)$

Regalli Parameters

$$
\begin{array}{ll}
N_{u}=4.83 & N_{d}=3.57 \\
b_{u}=0.5 & b_{d}=0.5 \\
\alpha_{0 u}=0.3 & \alpha_{0 d}=0.3 \\
\alpha_{u}^{\prime}=0.45 & \alpha_{d}^{\prime}=0.45
\end{array}
$$

Andrey fit v2.p6

$$
\begin{array}{cc}
N_{u}=15.4 & N_{d}=33.2 \\
b_{u}=0.46 & b_{d}=3.7 \\
\alpha_{0 u}=0.3 & \alpha_{0 d}=0.3 \\
\alpha_{u}^{\prime}=-0.07 & \alpha_{d}^{\prime}=0.40
\end{array}
$$

U Regali, Andrey

Andrey: $\left\langle r_{d}\right\rangle>\left\langle r_{u}\right\rangle$
V.Koubarovsky - Separated u and d GFFs from CLAS π^{0} and η data Clearly, $\left\langle r_{d}\right\rangle>\left\langle r_{u}\right\rangle$

Recalculate number density $q\left(\bar{E}_{T}\right)$

Rescale $f_{u}(x)$ and $f_{d}(x)$ based on $\operatorname{GFF}\left\langle\bar{E}_{T}\left(t, x_{B}\right)\right\rangle$ fits.

Fit to generalized form factor: assume simple exponential model at each x_{B} :

$$
\begin{aligned}
& \left\langle\bar{E}_{T}\left(t, x_{B}\right)\right\rangle=A\left(x_{B}\right) e^{t f\left(x_{B}\right)}=A\left(x_{B}\right) e^{-\Delta^{2} f\left(x_{B}\right)}=\left\langle\bar{E}_{T}(b)\right\rangle=\frac{k\left(x_{B}\right)}{4 \pi f_{d}\left(x_{B}\right)} e^{-\frac{b^{2}}{4 f\left(x_{B}\right)}} \\
& \langle b\rangle=\frac{\int b\left\langle\bar{E}_{T}(b)\right\rangle d b}{\int\left\langle\bar{E}_{T}(b)\right\rangle d b}\langle r\rangle=\hbar c\langle b\rangle \sim \hbar c \sqrt{2 f\left(x_{B}\right)}
\end{aligned}
$$

Transversely polarized of u and d quarks in an unpolarized nucleon.
(e.g. see Diel-Kroll (2004), Kroll Diehl-Hagler-05 figs. 2,5)

$$
q_{T}(x, \vec{b}) \equiv \frac{1}{2}\left(b^{x} \hat{x}-b^{y} \hat{y}\right) \frac{1}{m} \frac{\partial}{\partial b^{2}} \overline{\mathcal{E}}_{T}
$$

Rescale Kroll-Passek-Kumericki (2018) parameters such that $\left\langle b_{d}\right\rangle=2\left\langle b_{u}\right\rangle$

$q\left(\overline{\mathcal{E}}_{r d}\right)$

$$
x=0.2
$$

