
Workflow

Slow-ish development:

C++/ROOT:

+ROOT, RooFit

+pre-existing expertise

C++ reading library

JAVA/COATJAVA:

+native COATJAVA synergy
(HIPO)

+cross-platform, multi-
threading, memory manage-
ment

Fast-ish development:

Python/PyROOT/etc:

+near native access to ROOT

+brevity/readability

+WORLDWIDE USAGE

-based on C++ reader library,
i.e. lags from most recent de-
velopment

+easy multi-threading

Groovy/COATJAVA

+brevity/readability

+native access to COATJAVA

worldwide usage

+superior collections process-
ing capabilities (sugar, IMHO)

+easy multi-threading

1 / 3



Workflow

Stage 1: reducing cooked data (trains, DST) to custom skims

Groovy: fast prototyping

Stage 2: reducing custom skims to plots, class

Groovy to save into ROOT files, hists etc

Stage 3: aggregated data analysis

Python with PyROOT modules and 3rd party ML libs

2 / 3



Summary

Reactions:
ep → epγ

ep → epπ0

ep → epη

ep → epφ

π0, π+, π− SIDIS

Commmon particles:
electron ID

proton ID

photon ID

π+, π−,K+,K− IDs

Develop common PID cuts (MC and DATA)

Quality monitoring (custom timelines)

Produce intermediate skims
(HIPO4 event tagging, custom wagons)

Event selection and further analysis:
exclusive cuts?
kinematic fitter?
machine learning algorithms?

3 / 3


