Exclusive Coherent Electroproduction of the Neutral Pion Off Helium-4 and The Case for Kinematic Fitting

Frank Thanh Cao

Advisor: K. Joo Co-Advisor: K. Hafidi

University of Connecticut

October 2018

When embedded in the nucleus,

- What about proton changes?
- What remains the same?

When embedded in the nucleus,

- What about proton changes?
- What remains the same?

Accessing the nuclear generalized parton distributions (GPDs) and form factors (FFs) are a way to approach and answer these questions.

When embedded in the nucleus,

- What about proton changes?
- What remains the same?

Accessing the nuclear generalized parton distributions (GPDs) and form factors (FFs) are a way to approach and answer these questions.

Measuring beam-spin asymmetries (BSA) from DVCS and DVMP processes help to uncover these intricate math. objects.

When embedded in the nucleus,

- What about proton changes?
- What remains the same?

Accessing the nuclear generalized parton distributions (GPDs) and form factors (FFs) are a way to approach and answer these questions.

Measuring beam-spin asymmetries (BSA) from DVCS and DVMP processes help to uncover these intricate math. objects.

Nuclear targets offer two distinct channels:

- Coherent (Nucleus stays intact)
- Incoherent (Nucleon breaks off and traverses nuclear medium)

Enter the CLAS EG6 Experiment

Start with the simplest dense stable nucleus: ${}^{4}\mathrm{He}.$

Measure the BSA for exclusive processes to get at nuclear and modified nucleonic FFs and GPDs.

Channel	Process		BSA
Coherent	DVCS:	$\left(e^{-4}\text{He}, e^{-4}\text{He} \gamma\right)$	$Published^1$
	DVMP:	$ \underbrace{\left(e^{4}\mathrm{He}, e^{4}\mathrm{He} \; \pi^{0}\right)}_{\left(e^{4}\mathrm{He}, e^{4}\mathrm{He} \; \eta\right)} $	This talk Stats. too low
Incoherent	DVCS :	$^{4}\mathrm{He}\left(e,e\ p\ \gamma ight) X$	Under review
	DVMP:	${}^{4}\text{He}\left(e, e \ p \ \pi^{0}\right) X$ ${}^{4}\text{He}\left(e, e \ p \ \eta\right) X$	Work in prog. ² Work in prog. ²

¹M. Hattawy Phys. Rev. Lett. 119, 202004 (Nov. 2017) ²Perfectly suited for future ALERT detector

Formalism

Generally, the BSA can be expressed in terms of the squared-transition amplitude $\big<|{\cal M}_\pm|^2\big>:$

$$\begin{split} \mathcal{BSA} &= \frac{\left\langle |\mathcal{M}_{+}|^{2} \right\rangle - \left\langle |\mathcal{M}_{-}|^{2} \right\rangle}{\left\langle |\mathcal{M}_{+}|^{2} \right\rangle + \left\langle |\mathcal{M}_{-}|^{2} \right\rangle}; \\ &\left\langle |\mathcal{M}_{\pm}|^{2} \right\rangle = \left(\frac{e^{2}}{q^{2}}\right)^{2} \mathcal{L}_{\pm}^{\mu\nu} \mathcal{H}_{\mu\nu}; \\ &\mathcal{H}_{\mu\nu} := J_{\mu}^{\dagger} J_{\nu} \end{split}$$

Formalism

Generally, the BSA can be expressed in terms of the squared-transition amplitude $\big<|{\cal M}_\pm|^2\big>:$

$$egin{aligned} \mathcal{BSA} &= rac{\left< |\mathcal{M}_{+}|^{2}
ight> - \left< |\mathcal{M}_{-}|^{2}
ight
angle}{\left< |\mathcal{M}_{+}|^{2}
ight> + \left< |\mathcal{M}_{-}|^{2}
ight
angle}; \ & \left< |\mathcal{M}_{\pm}|^{2}
ight
angle &= \left(rac{e^{2}}{q^{2}}
ight)^{2} \mathcal{L}_{\pm}^{\mu
u} \mathcal{H}_{\mu
u}; \ & \mathcal{H}_{\mu
u} := J_{\mu}^{\dagger} J_{
u} \end{aligned}$$

<u>C. R. Ji's formulation</u>^a for 0⁻⁺ meson electroproduction off 0⁺⁺ target $\begin{pmatrix} e^{-4}\text{He} \rightarrow e^{-4}\text{He} \pi^{0} \end{pmatrix}$ $J_{\mu} = F_{PS} \epsilon^{\mu\nu\alpha\beta} q_{\nu} \bar{P}_{\alpha} \Delta_{\beta}$ $\Rightarrow \mathcal{H}_{\mu\nu} = |F_{PS}|^{2} \epsilon_{\mu\alpha\beta\gamma} \epsilon_{\nu\alpha'\beta'\gamma'} q^{\alpha'} \bar{P}^{\beta'} \Delta^{\gamma'}$ $= \mathcal{H}_{\nu\mu}$ $\Rightarrow BSA \equiv 0$

^aJi et al., arXiv:1806.01379 (June 2018)

Experiment

CEBAF @ JLab delivers long. polarized 6 GeV electrons to CLAS which detects the scattered electrons:

Experiment

CEBAF @ JLab delivers long. polarized 6 GeV electrons to CLAS which detects the scattered electrons:

Experiment

The Jefferson Lab's CLAS EG6 experiment is characterized by its helium gas target, solenoid magnet, and the addition of two detectors:

Radial Time Projection Chamber (RTPC)

Inner Calorimeter (IC)

Detects ⁴He[']

Measuring BSA of π^0 DVMP

We measured the fully exclusive coherent reaction:

$$e^{4}\text{He} \rightarrow e^{4}\text{He} \pi^{0} \rightarrow e^{4}\text{He} \gamma \gamma$$

Measure the beam-spin asymmetry (BSA):

$$BSA(\phi) = \left(\frac{1}{P_B}\right) \frac{N^+(\phi) - N^-(\phi)}{N^+(\phi) + N^-(\phi)}$$

- Small cross-section \rightarrow low statistics
- Relatively large background
- Clean event selection is important!
 - Exclusivity Variable Cuts
 - Kinematic Fitting

Measuring BSA_{d} of π^0 DVMP

• Small cross-section \rightarrow low statistics

- Relatively large background
- Clean event selection is important!
 - Exclusivity Variable Cuts
 - Kinematic Fitting

- Relatively large background
- Clean event selection is important!
 - Exclusivity Variable Cuts
 - Kinematic Fitting

Kinematic Fitting in a Nutshell

Introduce and minimize \mathcal{L} , with Lagrange multipliers $\vec{\mu}$:

$$\mathcal{L} = \left(\vec{\epsilon}^{\nu}\right)^{T} C_{\eta}^{-1} \vec{\epsilon}^{\nu} + 2\left(\vec{\mu}^{\nu}\right)^{T} \left(A^{\nu} \vec{\xi}^{\nu} + B^{\nu} \vec{\delta}^{\nu} + \vec{c}^{\nu}\right)$$

At the end of the day, there is **one** cut that selects your events: The Confidence Level Cut (CLC)

5*C*-Kinematic Fit on EG6: $DV\pi^0P$

$$e^{4} \text{He} \rightarrow e^{4} \text{He} \pi^{0}$$

$$\pi^{0} \rightarrow \gamma \gamma$$

$$5C \Rightarrow \begin{cases} E_{init} - E_{fin} \equiv 0 \\ \vec{p}_{init} - \vec{p}_{fin} \equiv \vec{0} \\ M_{\pi^{0}} - \sqrt{(E_{\gamma_{1}} + E_{\gamma_{2}})^{2} - \|\vec{p}_{\gamma_{1}} + \vec{p}_{\gamma_{2}}\|^{2}} \equiv 0 \end{cases}$$

Kin. Fit Applied

Kin. Fit Applied

Beam-Spin Asymmetry Comparison

For

$$e^{4}\mathrm{He} \rightarrow e^{4}\mathrm{He} \pi^{0}$$
 , (1)

the BSA is obtained from two different event selection methods:

Beam-Spin Asymmetry

Beam-spin asymmetries for events passing exclusivity cuts *but* failing kin. fitting:

Summary

- The BSA of coherent π⁰ electroproduction off ⁴He is consistent with 0 (-0.5±6.4%)
 - Benchmark measurement for Ji's formulation
- Event selection plays a crucial role
- Exclusivity cuts require some cleverness
 - Intimate knowledge of the dataset and reaction needed to remove background and to clean the dataset
- Kin. fitting does not
 - It uses both detector resolutions and conservation law constraints to do a fantastic job in rejecting background
 - Some of these events cannot be rejected by any obvious series of cuts
- Kinematic fitting should be used in more analyses!

Outlook

- Extend kin. fitting to look into the incoherent channel
- Measure BSA for incoherent DVMP

Thank you!

Questions?

. . .

Backup Slides

5C-Kinematic Fit on EG6: $DV\pi^{0}P$ $e^{4}He \rightarrow e^{4}He \pi^{0}$ $\pi^{0} \rightarrow \gamma \gamma$ $5C \Rightarrow \begin{cases} E_{init} - E_{fin} \equiv \mathbf{0} \\ \vec{p}_{init} - \vec{p}_{fin} \equiv \mathbf{\vec{0}} \\ M_{\pi^{0}} - \sqrt{(E_{\gamma_{1}} + E_{\gamma_{2}})^{2} - \|\vec{p}_{\gamma_{1}} + \vec{p}_{\gamma_{2}}\|^{2}} \equiv 0 \end{cases}$

CLC = 5%

Invariant Mass Distribution for $\gamma\gamma$

Sanity Check: Vertex Coincidence

Line Distribution: All Measured Events Filled Distribution: Measured Events After CLC

Sanity Check: Photon Distance

The 5C-fit has no knowledge of the vertex coincidence between the helium in the RTPC and the electron in CLAS but produces a clean distribution of their distance.

B. Torayev's Cut : $\Delta X \in [3,7]$ cm

Sanity Check: π^0 Momentum Distribution

The 5*C*-fit has no cut on the π^0 momentum but the distribution shows that the minimum momentum is around 3GeV/c.

B. Torayev's Cut :
$$P_{\pi^0} > 3 \text{ GeV}/c$$

Sanity Check: γ_2 Momentum Distribution

The 5*C*-fit has no cut on the γ_2 but the distribution shows that the minimum momentum is around 0.3 GeV/c.

B. Torayev's Cut : $P_{\gamma_2} > 0.4 GeV/c$

Sanity Check: Exclusivity Variable Distributions

Black: B. Torayev's Distributions Blue: Measured After CLC Green: Fitted After CLC B. Torayev's Cuts:

$$ert M_{X_2}^2 - 0.005 ert < 0.048 \left({
m GeV}/c^2
ight)^2 ert \Delta \phi - 0.16 ert < 0.138 \; {
m deg}.$$

$$ert heta_{\pi^0,X_1} - 2.5 ert < 0.03$$
 deg.
 $ert M_{X_0}^2 - 14.079 ert < 0.03 \left({
m GeV}/c^2
ight)^2$

The 5C-fit has no cuts on any of the exclusivity variables but they are essentially within the previous cuts.

Datasets

Consider the Venn diagram of the datasets:

Exclusivity Cuts (800 Events) Common (488 Events) Kinematic Fitting (547 Events)

Beam Spin Asymmetries

Invariant Mass Distributions

Exclusivity Variable Distributions

M² [(GeV/c²)²]

Beam Spin Asymmetries

Beam spin asymmetries summary:

Failed Fit == Background?

 $e^{4}\text{He} \rightarrow e^{4}\text{He} \pi^{0}$

All Exclusivity Variables

Kinematic Fit Applied to EG6: DVCS 4*C*-fit Validation

 $e^{4}\text{He} \rightarrow e^{4}\text{He} \gamma$

$$4C \Rightarrow \begin{cases} E_{init} - E_{fin} \equiv 0\\ \vec{p}_{init} - \vec{p}_{fin} \equiv \vec{0} \end{cases}$$

DVCS 4C-fit Outputs

DVCS 4C-fit Exclusivity Variable Distributions

Measured values from: Red: Exclusivity Cuts Blue: Kinematic Fit

Fitted values from: Green: Kinematic Fit

DVCS 4C-fit Beam-Spin Asymmetries

Power of Kin. Fit: E1-DVCS2 Dataset

C-Kinematic Fit on E1-DVCS2: $DV\pi^0P$

Motivation: Missing Mass² Distribution

Motivation: Missing Mass² Distribution

Kinematic Fit Applied to EG6: 4C-fit on DV $\pi^{0}P$

 $e^{4}\text{He} \rightarrow e^{4}\text{He} \gamma \gamma$

$$4C \Rightarrow \begin{cases} E_{init} - E_{fin} \equiv 0\\ \vec{p}_{init} - \vec{p}_{fin} \equiv \vec{0} \end{cases}$$

(No $\gamma\gamma$ invariant mass constraint!)

Motivation: Invariant Mass Dist.

Even with the detected e in CLAS and ${}^{4}\text{He}$ in the RTPC, we still have to sift all combinations of photon pairs formed from both the IC and EC:

¹For a fair comparison, additional π^0 cuts includes a photon distance cut $(|\Delta x_{\gamma\gamma} - 5cm| < 2cm)$ and a momentum cut $(p_{\pi^0} > 3\text{GeV/c})$.

Motivation: Invariant Mass Dist.

4C Kin. Fit $M_{\gamma\gamma}$ After CLC

Even with the 4C kinematic fit, we see that the invariant mass distribution has a clear π^0 -peak with very little background.

Note: Nowhere in the implementation is the nominal value of $M_{\pi 0}$ used!

Robustness of Exc. Cuts (or lack thereof)

 $e~^4\mathrm{He} \rightarrow e~^4\mathrm{He}~\pi^0$

Adding One Exclusivity Cut: E Cut

0.4

Beam Spin Asymmetry

(692 events, $\mathsf{BSA} = -6.4 \pm 5.6\%$)

Adding One Exclusivity Cut: E Cut

Exclusivity Variable Distributions

(692 events, $BSA = -7.8 \pm 5.6\%$)

Sampling Subsets of Exc. Cuts

 $e^{4}\text{He} \rightarrow e^{4}\text{He} \pi^{0}$

Likelihood of Selecting 312 out of 800 events having $A_{Raw} = -20.3\%$

A_{Raw} (Choosing 312 Random Events Out of 800 Exc. Cut Coh. π⁰ Events)

Likelihood of Selecting 488 out of 800 events having $A_{Raw} = -3.3\%$

A_{Raw} (Choosing 488 Random Events Out of 800 Exc. Cut Coh. π⁰ Events)

Likelihood of 692/800 events having 33% Less Asymmetry

BSA and N_{events} vs. CLC

e ⁴He $\rightarrow e$ ⁴He π^0

BSA vs. Conf. Level Cut: Full Dataset

BSA vs. Conf. Level Cut: Exclusivity Selected Events

RTPC: Particle Determination

Left side

Right side

