
Exascale Computing for Lattice QCD

1

C. DeTar

USQCD All Hands Meeting
Jefferson Lab
May 2, 2020

Hardware

• ALCF Aurora End of 2021

• Intel/Cray

• Node: 2 Intel Sapphire Rapids processors + 6 Xe (Ponte Vecchio) GPUs

• Cray Slingshot Network

• Programming model: Usual, Intel OneAPI, OpenMP, SyCL/DPC++

• ORNL Frontier End of 2021

• AMD/Cray

• Node: 1 AMD EPYC CPU + 4 AMD Radeon GPUs

• Cray Slingshot Network

• Programming model: Usual + AMD HIP

2

Performance goal

• Lattice QCD is one of 24 ECP applications

• FOM (figure of merit) Our benchmark suite must run 50 X faster on Aurora or Frontier
than on Mira or Titan

• Benchmark suite has 3 x 2 = 6 components

• (MILC + CPS + Chroma) X (configuration generation + analysis)

• Measure time to complete a specific task. Average improvement factors

• Currently we are testing on Summit where our FOM stands at 7.5 X as of April 2019.

• We will be measuring a new FOM in the next few weeks

3

LatticeQCD ECP

• Solver Task: Algorithms, multigrid (see Evan’s talk)

• Critical Slowing Down: (see Chulwoo’s talk)

• Contractions and Matrix Elements (see Robert’s talk)

• Software (This overview. see Balint, Kate, and Peter’s talks)

4

ECP Software Effort Organization

• Readiness for each of the three major code bases

• Chroma (Jóo, Edwards, Winter)

• CPS (Jung, Duo Guo, Yong Chull, Kelly)

• MILC (CD, Gottlieb, Gelzer)

• OpenMP, OpenACC, Kokkos Offloading (Meifeng Lin, Chapman, Kale)

• Grid portability (Boyle, Filuci, Yamaguchi, CD, Vaquero)

• QUDA portability (Kate, Howarth, Strelchenko, Osborn, Xiao-Yong Ji

5

Challenge
• Novel HPC architectures

• Thus far, lattice QCD GPU experience has been almost exclusively with NVIDIA and
highly optimized QUDA code.

• Must port our codes to new hardware with new and still-developing programming tools:

• OpenMP, SyCL, DPC++, HIP, etc

• Performance unknown

• ECP Lattice QCD software strategy

• Port QUDA and Grid for wide community use

• Other effort

• HotQCD (Steinbrecher -> Intel)

• QDP++ (Jóo -> ORNL)

• QEX (Osborn, Xiao-Yong Jin)

• K-pi-pi code (Kelly)

6

QUDA strategy and status

• QUDA strategy (thanks Kate Clark et al!)

• Currently depends on NVIDIA’s CUDA

• Define/Insert a back-end interface

• Provide architecture-specific backend implementations

• Interface consists of wrappers for CUDA calls plus kernel offloads plus reductions

• QUDA status

• CUDA wrappers essentially done (Howarth)

• Initial proposal for kernel offloading to various backends. Work on a CPU
implementation (Osborn). (QUDA already has some built-in CPU support.)

• Some experimentation with DPC++ port using Intel’s conversion tool (Strelchenko)

7

QUDA algorithms

HIP

AMD

DPC++

Intel

CPU

Generic

CUDA

NVIDIA

Grid strategy and status

• Grid strategy

• Grid was originally optimized for KNL — vector processor with SIMD lanes

• Port to NVIDIA GPU via CUDA. Do this in a generic way for maximum flexibility.

• Next step: port to DPC++/SyCL and HIP

• Grid status (see Peter’s talk next)

• NVIDIA GPU port completed last year

• SyCL port waiting for more mature software stack (and some new features?)

8

Other effort

• QDP++ strategy and status (see Balint’s talk)

• Exploring JIT/LLVM and Kokkos

• Kokkos will have both HIP and SyCL back ends

• HotQCD strategy and status (Steinbrecher)

• Use OpenMP offload for Intel

• Version works on Intel Gen9 — waiting for next generation Intel hardware

9

