$B \rightarrow D$ Transitions

Determination of V_{cb} from $B \rightarrow D^{(*)} \ell \nu$ using the Oktay-Kronfeld Action

Yong-Chull Jang

Physics Department, Brookhaven National Laboratory

(LANL/SWME Collaboration)

USQCD AHM 2020 May 2, 2020

CKM Matrix and Flavor Physics

- CP Violation in the Standard Model
- Precision test of the SM
- Quarks in bound states
- Hadronic matrix elements from Lattice QCD
- decay constants f, form factors \mathcal{F} , ...
- $d\Gamma/d\omega \propto |V_{cb}|^2 |\mathcal{F}(\omega)|^2 imes$ (known factor)

Long-Standing Puzzle of V_{cb}

Figure: CERN Courier, Jan./Feb. 2020

• $2.8 - 3.2\sigma$ tension in $|V_{cb}^{excl} - V_{cb}^{incl}|$

• HFLAV2019

 $V_{cb} \times 10^3 = 42.19(78)$ incl. vs 39.25(56) excl.

- FLAG2019 [arXiv:1902.08191v3] exclusive averages $V_{cb}^{excl} \times 10^3 = 39.09(68)$ BGL vs 39.41(61) CLN
- Gambino et. al., [PLB763(2016)60] $V_{cb}^{incl} \times 10^3 = 42.00(65)$
- HFLAV2019 and FLAG2019 do not include recent results BaBar [2019 PRL] and LHCb [LHCb-PAPER-2019-041]

CLN [Caprini, Lellouch, Neubert, Nucl. Phys. B 530, 153 (1998)] BGL [Boyd, Grinstein, Lebed, Phys. Rev. Lett. 74, 4603 (1995)]

Long-Standing Puzzle of V_{cb}

Figure: CERN Courier, Jan./Feb. 2020

• CLN and BGL are *compatible* for $B \rightarrow D^* \ell \nu$ (Belle [2019 PRD], BaBar [2019 PRL]) , $B \rightarrow D \ell \nu$ (Belle [2016 PRD]), and new LHCb results

• First
$$B_s^0 \to D_s^{(*)-} \mu^+ \nu_{\mu}$$
 analysis from LHCb
[LHCb-PAPER-2019-041] (PRD 101, 072004 (2020))

Differences among B → D^{*}, B → D, and B_s → D^(*)_s ⇒ form factors for all channels with a increased precision are interesting

 V_{ub} and V_{cb}

- about 3σ tension is in $|V_{ub}^{\text{excl}} V_{ub}^{\text{incl}}|$
- need more lattice calculations for $B
 ightarrow \pi \ell
 u$ and Λ_b decays form factors
- experimental error dominates $B \rightarrow \tau \nu$

R(D) and $R(D^*)$ for a test of Lepton Universality

$$R(D) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^+ \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^+ \ell^- \bar{\nu}_{\ell})}, \qquad R(D^*) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_{\ell})}$$
$$(\ell = e, \mu)$$

R(D) and $R(D^*)$ for a test of Lepton Universality

- Tension in the combined R(D) and $R(D^*)$ analysis: $3.8 \sigma \rightarrow 3.1 \sigma$ [HFLAV19] with Belle 19 results @ Moriond EW 2019 [arXiv:1904.08794]
- SM prediction of R(D) uses LQCD form factor calculations
- SM prediction of $R(D^*)$ uses Belle unfolded data for form factors
- $B \rightarrow D^*$ form factors from LQCD for all kinematic range is important / on-going progress [A. Vaquero et. al. (FNAL/MILC) arXiv:1912.05886]
- $B \rightarrow D$ form factors from LQCD with a higher precision is desirable

Impact on Unitarity Triangle Analysis

- As B experiments improved, the measurements of angles (α, β, γ) and the mass differences (Δm_{d,s}) became more precise
- The parabolic band ε_K still has a largest uncertainty in the global unitarity triangle fit
- The leading contribution to $arepsilon_{K}\propto c_{arepsilon}\hat{B}_{K}|V_{cb}|^{4}$
 - \rightarrow lattice form factors / exclusive V_{cb} with $\sim 1\%$ error

- (BNL) Yong-Chull Jang
- (LANL) Tanmoy Bhattacharya, Rajan Gupta, Sungwoo Park
- (SNU) Jon A. Bailey, Benjamin J. Choi, Seungyeob Jwa, Sunkyu Lee, Weonjong Lee
- (KIAS) Jaehoon Leem

We thanks to USQCD and KISTI for computing allocations

We thanks to MILC collaboration for making their HISQ ensembles publicly available

Lattice Setup

- Valence c, b: Oktay-Kronfeld action [PRD 78, 014504 (2008)] improved up to $\mathcal{O}(\lambda^3)$, $\lambda \sim \Lambda_{\text{QCD}}/m_{b,c}$, significantly reduces the heavy quark discretization error (dominant error)
- Valence d, s: HISQ, unitary points
- MILC HISQ ensemble [Bazavov et. al., PRD 87, 054505 (2013)]
 N_f = 2 + 1 + 1 dynamical quarks, improves continuum/chiral extrapolation (second largest error)
- 3 lattice spacings and 3 pion masses $M_{\pi} \approx 130, 220, 310 \,\mathrm{MeV} \ (m_l/m_s \approx 1/27, 1/10, 1/5)$ m_s and m_c are physical mass
- Coherent sequential sources: 1 sequential inversion for $N_{\rm src} = 3$
- Gaussian smeared quark source and sink operators improve statistics and systematics, e.g., excited-state contamination in $B, D^{(*)}$

- anticipate to finish *a*09*m*130 meas. by using USQCD allocation
- a06m220 meas. started at KISTI

Quark Mass Tuning

• heavy quarks are tuned with physical B_s, D_s

(solid) PS, (dashed) V meson physical masses $M'_2(V) = M_2(P) + M_1(V) - M_1(P)$

κ_{crit} is nonperturbatively tuned
 [J. A. Bailey et. al., EPJ Web Conf. 175, 13012 (2018)]

- meson [quark] kinetic mass M₂ [m₂] is interpreted as phyiscal mass
- $am_0 > 1$ can be directly simulated ($am_{0,b} \approx 1.3, 2.0, 2.8$ for a = 0.06, 0.09, 0.12 fm)

Decay Constants

$$\langle 0|A^{\mu}|P(k)
angle = ik^{\mu}f_{P}$$
, where $A^{\mu} = Z_{A}\bar{\Psi}_{h}\gamma^{\mu}\gamma_{5}\psi_{l}$, $\Psi_{h} = \sum_{i}d_{i}\mathcal{R}_{i}\psi_{h}$

- Improved heavy quark field Ψ_h with rotation operators \mathcal{R}_i for the current
- Perturbative matching for the coefficients d_i up to O(λ³)
 [J. A. Bailey, YJ, Sunkyu Lee, WL, Jaehoon Leem, arXiv:2001.05590]
- Preliminary results implement up to $O(\lambda^2)$ current improvement [S. Park et. al., arXiv:2002.04755]

- lattice spacing dependence is mild in f_{D_s}/f_D , less clear in f_{B_s}/f_B
- a12m130 results are consistent with FLAG2019 (499 confs ightarrow 1000 confs.)
- noteworthy error reduction in f_{B_s}/f_B at $a=0.06\,{
 m fm}$

$B\to D\ell\nu$ Form Factors

$$\frac{\langle D(M_D, \boldsymbol{p}') | V_\mu | B(M_B, \boldsymbol{0}) \rangle}{\sqrt{M_D} \sqrt{M_B}} = h_+(\omega)(v + v')_\mu + h_-(\omega)(v - v')_\mu$$
$$v = \rho/M_B = (1, \boldsymbol{0}), v' = \rho'/M_D = (E_D/M_D, \boldsymbol{p}'/M_D), \omega = v \cdot v' = E_D/M_D$$

• Preliminary results with $\mathcal{O}(\lambda^2)$ improved current V_{μ} [Y.-C. Jang et. al., arXiv:2003.09206]

- Renormalization (matching) factor beside the tree-level Z^{tree} = exp((am_{1c} + am_{1b})/2) is expected to be small yet unknown
- nonperturbative calculation [RI-(s)MOM] is underway

$B\to D\ell\nu$ Form Factors

• Comparison of different current improvement orders (preliminary) [Y.-C. Jang et. al., arXiv:2003.09206]

- $\mathcal{O}(\lambda^2)$ improved current is crucial
- other ensembles show similar shifts in $h_{\pm}(\omega)$ by $\mathcal{O}(\lambda^1)$ and $\mathcal{O}(\lambda^2)$ improvements

 $h_{A_1}(\omega = 1)$: $B \to D^* \ell \nu$ Form Factor at zero-reocil $\omega = 1$

$$ho^2rac{\langle B|A^{bc}|D^*
angle\langle D^*|A^{cb}|B
angle}{\langle B|V^{bb}|B
angle\langle D^*|V^{cc}|D^*
angle}=|h_{A_1}(1)|^2\,,\quad
ho^2=rac{Z_A^{bc}Z_A^{cb}}{Z_V^{bb}Z_V^{cc}}\,,$$

- 4 matrix elements need for the double ratio are separately extracted from 3-pt correlators
- Preliminary results up to $O(\lambda^2)$ improved currents A_{μ} , V_{μ} [Y.-C. Jang et. al., arXiv:2003.09206]

- The matching factor ρ_{A_1} is expected to be close to 1, yet blinded
- Current improvement is crucial
- Improved action and current operator are expected to give a mild dependence in a

Y.-C. Jang (BNL)

Summary & Outlook

- Current improvement at $\mathcal{O}(\lambda^2)$ is crucial for the form factors, and the preliminary results are close to the continuum limit
- $\mathcal{O}(\lambda^3)$ current improvement is being implemented.
- Renormalization (matching) factor calculation is underway
- Improved action and current operator are expected to give a mild dependence in a.
- Analyzing more ensembles at physical pion mass or finer lattice spacing (a = 0.06 fm) will give us a better handle for chiral continuum extrapolation
- Statistics will be increased $(\times 8)$ with truncated solver method with a bias correction
- $B
 ightarrow D^* \ell
 u$ nonzero recoil data will be analyzed soon
- $\bullet\,$ More excitements will come with updates from Belle II and LHCb + LQCD efforts

Thank you for your attention

AZ