π^0 cross-section analysis

DVCS collaboration meeting Bishnu Karki

Feb 01, 2020

t and t_{min} Eric definition vs one in Malek's File

\mathbf{t}_{\min} and t redefined during analysis

- t : Difference between Malek's file and "t" I computed (using Eric's definition) is below "t" resolution (Good in t)
- $t_{_{min}}$: Simulation has some other definition than what $\,$ Charles's suggested (ELOG 585) $\,$

Smearing the simulation

Unphysical events ((M² < 0)

- Kin 601 => 0.02 %
- Kin 603 => 0.5%

$$\begin{bmatrix} q_x \\ q_y \\ q_z \\ E \end{bmatrix} \to Gaus\left(\mu, \frac{\sigma}{\sqrt{E}}\right) \begin{bmatrix} q_x \\ q_y \\ q_z \\ E \end{bmatrix}$$
$$\begin{bmatrix} q_x \\ q_y \\ q_z \\ E \end{bmatrix} \to Gaus(0, \theta) \begin{bmatrix} q_x \\ q_y \\ q_z \\ E \end{bmatrix}$$

Done is two steps:

1) First determine μ and σ (keeping theta at nominal value)

2) Second fix μ and σ and then smear θ

Electron selection

PID

Correction for dead time, tracking efficiency, and trigger efficiencies are well in place

4

Acceptance

π^0 event selection

Correlation between missing mass and invariant mass

M. Mazouz (https://hallaweb.jlab.org/dvcslog/Pion/131

Exclusivity cuts

3000		2	₽¶ 2 4	
2500			1	
E				
2000			3 3	
E				
1500				
1000			l l	
500				
E			L	
0	0.05	0.1	0.15 0.2	0.25
				M _{vv} (GeV)

Kinematic	$M_x^2 (GeV^2)$	$M_{\gamma_1\gamma_2}$ (GeV)
601	[0.3, 1.08]	[0.10, 0.16]
603	[0.5, 1.08]	[0.10, 0.16]

ep \longrightarrow e'p' π^0 X => well below to eliminate the SIDIS contamination

π^0 event selection

Accidental subtraction

$$N_{acc}_{{
m e}^{-}\Upsilon_{1}\Upsilon_{2}}$$

$$R_5 = N_{ccc} + \frac{N_{acc} + N_{cca} + N_{cac} + N_{aaa}}{N_{acc} + N_{cac} + N_{aaa}}$$

$$N^{ACC} = R_3 + (R_2 + R_4) - (R_1 + R_6)$$

Clustering window	Accidental	Section	Description
[-3, 3]	$N_{ccc} + N^{ACC}$	R_5	$ t_{\gamma_1} \le 3$ and $ t_{\gamma_2} \le 3$
[-11, -5]	$N_{acc} + N_{aaa}$	R_3	$ t_{\gamma_1} + 8 \le 3$ and $ t_{\gamma_2} + 8 \le 3$
[-11, -5] and [-3, 3]	$N_{cca} + N_{cac} + 2 N_{aaa}$	$R_2 + R_4$	$ t_{\gamma_1} \le 3$ and $ t_{\gamma_2} + 8 \le 3$
[-11, -5] and [5, 11]	2 N _{aaa}	$R_1 + R_6$	$ t_{\gamma_1} + 8 \le 3$ and $ t_{\gamma_2} - 8 \le 2$

R_2	=	N _{cca}	+	N _{aaa}
<i>R</i> ₃	=	Nacc	+	N _{aaa}

$$R_4 = N_{cac} + N_{aaa}$$

Cross-section extraction formalism $(\pi^{0} \text{ production})$

Cross section with different t' bin size Kin 601 (E0=8.52 GeV)

- 5 t' bin analysis is equivalent to 3 bin analysis and looking at middle bin (to account the bin migration)
- Migration is preferentially in one direction

Cross-section parameters Kin1High Malek's Data(E0=5.55 GeV)

• My code for cross-section can reproduce Malek's result within statistical uncertainty

Systematic study Kin 601/603

- 1) Exclusive cuts
- 2) Clustering threshold
- 3) Photon E cut
- 4) Virtual radiative correction (approximation for DVCS)
- 5) Correction from 3 clustering
- 6) May be comparison with G.R Goldstein, J.O Hernandez S. Liuti

Systematic study (Exclusive cut) **Kin 603**

M² high end at different position

M² low end at different position

Systematic study (Exclusive cut) Kin 601

Systematic study (cut on photons E) Kin 603

Systematic study (cut on photons E) Kin 601

Cut

- both photon > Threshold E
- Only σ_{T} + $\varepsilon \sigma_{L}$ is sensitive
- → Systematic up to 4%
- No reasonable explanation through variation in kinematic variables (Q², xB Γ,..)

Systematic study (Clustering threshold) Kin 603

Cuts on photon E:

- $E_1 = E_2 > Clustering Threshold$ (No any cut on photon E in analysis)
- Cross-section results are in good agreement

Systematic study (Clustering threshold) Kin 601

Cuts on photon E: $E_1 = E_2 > 1.5 \text{ GeV}$ (Additional cut on photon E > Clustering threshold)

Cross-section parameters Kin 601 (E0=8.52 GeV)

- Model used data at small xB and t
- σ_{L} from model is consistent to zero

Cross-section parameters Kin 603 (E0=10.59 GeV)

- The interference term $\sigma_{_{LT}}$ suggest $\sigma_{_{L}}$ is larger
- These data will improve the parametrization of the GPDs

Error budget

Kin	Run period	E _{beam} (GeV)	P ₀ (GeV)	θ _{HRS} (deg)	Q1 status	(σ _м /σ _D) _{ου}	(σ _м /σ _D) _E	(σ _м /σ _D) _A	Average
481	Sp '16	4.48	1.48	37.14	Unsat.	1.03	1.06	1.00	1.03
361	F '14	7.38	2.71	22.83	Unsat.	0.95	0.97	0.99	0.97
362	F '16	8.52	3.19	20.98	SOS (1%)	1.04	1.06	1.06	1.05
363	F'16	10.62	3.99	18.67	SOS (7%)	1.04	1.07	1.06	1.06
601	F '16	8.52	3.59	24.56	SOS (4%)	1.01	1.06	1.06	1.04
603	F '16	10.62	3.15	29.00	SOS (1%)	0.98	1.02	1.03	1.01
482	Sp '16	8.82	3.996	26.27	detuned	1.06		1.06	1.06
483	Sp '16	8.82	2.920	26.27	detuned	1.06		1.09	1.06
484	Sp '16	10.97	3.360	24.92	detuned	1.09		1.09	1.09
Avera	Average					1.03±0.04	1.04±0.04	1.05±0.03	1.04±0.04

Source	Contribution
DIS (e ⁻)	4%
Exclusive cuts	0.5%
Threshold E cut and clustering	0 + 0 (603) Point to point up to 4% each (601)
Trigger loss (seen in DIS)	?
Beam Polarization	1%

- 4% systematic in DIS = {PID, R-Function, Luminosity, Solid angle, trigger+tracking efficiency, virtual radiative correction}
- 4 % deviation from world data
 - → May not effect DVCS trigger

THANK YOU !

