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Main Motivation

@ Both proton and neutron distributions are important to
understanding nuclear matter

o Calculations are difficult due to non-pQCD regime
complicated by many-body physics
@ Interesting for
o Fundamental nuclear structure
e Isospin dependence and nuclear symmetry energy
e Dense nuclear matter and neutron stars
@ Isovector properties not well constrained by binding energies -
must look at distributions within nuclei

@ Proton distribution is relatively easy - electromagnetic probes

@ Neutron distribution is difficult

o Weakly couples to electroweak probes
e Hadronic probes have considerable uncertainty
o Theory has range of R, — R, for various nuclei
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Why “8Ca and 2%8Pb?

Why %8Ca and 2%8Pb and not something else?

@ What further measurements could be done?

These are the only choices available for such a program

Require neutron excess

Require spin-0

Must have very long lifetime

Require large inelastic state separation(3.8 MeV for 48Ca)

No other nuclei meet these criteria

@ Both nuclei will provide two points over a broad mass range
and provide powerful tests when done together
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New Developments since PAC39

@ Successful theory workshop with over 20 presentations

http://www. jlab.org/conferences/crex/
J. Piekarewicz: A three-legged “isovector” stool: R,[*® Ca]:R.[*®Pb]; ap [[®® Pb]

Organizing Committee: C. Horowitz (Indiana), K. Kumar (UMass),
R. Michaels (JLab), W. Nazarewicz (UTK/ORNL), J. Piekarewicz (FSU)
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New Developments since PAC39 (2)

o Neutron skin measurements on 2%Pb and *8Ca highlighted as
important program

NSAC Subcommittee Report

Jefferson Lab uses a faint signal arising from parity violation induced by the weak
interaction to measure the radius of the neutron distribution of stable lead and
calcium nuclei. Studies of neutron skins in heavy nuclei at both FRIB and Jefferson
Lab, and investigations of high-frequency nuclear oscillations and intermediate energy
nuclear reactions with a range of proton and neutron-rich nuclei will help pin down the
behavior of nuclear matter at densities below twice typical nuclear density

o Refined systematic errors and simulations with deeper analysis
o Updated projected uncertainty from 0.03 — 0.02 fm
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Importance of Neutron Densities

@ Constraints on neutron EOS
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@ Slope of EOS can be used to constrain DFTs
o Correlated to p dependence of symmetry energy
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Density Functional Theory

03F B

@ PREX constrains slope of

symmetry energy 2023 ]
@ A correlation is predicted E sl ]
between 8Ca and 2%8Pb,

0151 = Relativistic

® Non-relativistic

but needs to be tested in
DFT framework b 0.‘]5 0‘.2 0.‘25 0‘.3 0.‘35 04
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@ Model spans suggest values between Ca and Pb, need to be
tested, correlation isn't good, may have systematic
assumptions across all models

@ A successful test would build confidence in extending isovector
observables across the periodic table

@ Disagreement would mean something is missing - isovector
and surface energy contribution strengths not well
understood? models incomplete?
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Intermediate Mass Nuclei as a Bridge

Nuclear Landscape

Theory TAC Review

...this and the complementary one in %8 Pb
are important measurements for
constraining, on the one hand, inputs to
nuclear DFT phenomenologies and, on the
other, inputs to nuclear dynamics—the

modeling of three-neutron forces—in

Interface provides
@ crucial clues

microscopic approaches.

@ Data from medium-sized nuclei can act as a bridge between
light-nuclei ab initio calculations and heavy nuclei DFT

@ Isovector observables are not easily accessible and typically
poorly constrained

o Facilities like FRIB will study nuclei with very large neutron
skins and halos, need CREX and PREX to reliably anchor
those measurements
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Coupled Cluster Models

| @ Coupled cluster models just
~— Exp. charge

Boon || becoming computationally feasible,
Neutron
but are still preliminary

o G. Hagen of ORNL awarded
early-career award to do these

calculations
0 7 1 6
) @ 3-neutron forces have an effect on
G. Hagen et al, isovector properties, such as the
Phys. Rev. Lett 109 032502 (2012) neutron skin

@ Agreement with calculations would increase confidence in such
calculations to be applied to other nuclei and is a test of such
models

@ Disagreement would mean something is missing, such as
important terms in the expansion and models need to be
refined
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Accessing Neutron Radii in Nuclei

Hadronic Probes
o Elastic pN, BN, nN, 7N Electroweak Probes

@ Parity violating electron
scattering

@ Alpha scattering

@ Antiproton scatterin . .
'Pr rne @ Atomic parity violation

Have uncertainty in extraction
due to strong force interactions

@ “Clean” measurements,
) fewer systematics

Complementary Methods Technically chaIIe‘nging d}Je to
: —— small weak force interactions
e GDR/dipole polarizability

s
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Parity Violating Electron Scattering

@ e~ also exchange Z, which is parity violating
@ Primarily couples to neutron:
QPO o 1 — 4sin? fyy &~ 0.076, QRSN o 1

@ Detectable in parity violating asymmetry of electrons with
different helicity

@ In Born approximation, Q? < M2, from ~ — Z interference:
+ _ 4= G 2 F 2
APV: U+ g = FQ 1—4Sin2ew— n(Q2)
ot +o0~  4ran/2 Fp(Q%)
o For fixed target exp., typical Apy ~ 1077 —10~*
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Optimize Kinematics

o Compete against falling rates with higher asymmetry as Q?

grows
@ Need to optimize to sensitivity of A to marginal changes in
radius
C-REX: Sensitivity to 1% change in Neutron Radius | ‘ C-REX: Absolute Error in Neutron Radius |
E dAJ/A for 1% changein Rn 0034
E ar(m)E
dAA _E s
o 7E oo
; hd ooze%
4; oozaf
25 0. ; he
; oo
2; 35 6.5 0015.7 35

45 5.5 4 4.5 55
0 (scattering angle) 0 (scattering angle)

@ For 2.2 GeV standard-energy beam, 0 ~ 4°

@ JR, ~ 0.02 fm with 35 days beamtime and anticipated
systematics
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Experimental Configuration

@ HRS's run simultaneously
and symmetrically

@ Apy ~ 2 ppm, comparable
to previous generation
HAPPEX-II

@ Much less challenging than
0.5 ppm PREX
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Septum Magnet

Septum Magnet Requirements

@ HRS only go to 12.5°, require
septum to reach 4°

o Sufficient hardware resolution
must be maintained, need pure
dipole

@ Need to reach 1350 A/cm?
with 2-coil configuration

@ Require new power supply,

\ LCW pumps
@ Target must be moved back for
/ 4° acceptance, room is available

without major reworking

v

Seamus Riordan CREX 16/22



HRS and Quartz Detectors

@ HRS has hardware resolution 1073, use to separate inelastic
states

X-Y of Tracks in HRS Focal Plane |

cut defining
in the detector”

First excited state

3.84 MeV Elastic events

T T I T —

I | L
-015  -01 -0.05 0 0.05 0.1
X (m) dispersive direction

IS
duuuu

G
I .
oE

kS

5

N

@ Place quartz Cerenkov detectors to minimize inelastics

@ Several states, but kept to < 0.5%. Asymmetries calculable to
some level and are expected to be benign
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e 1 g/cm?, 5% radiator (much less than PREX!)

@ Factor 20 safety margin in beam current to avoid target
melting due to higher conductance, smaller dE/dx, and higher
melting point

@ Oxidizes when exposed to air, must remain isolated

@ Al end windows contribute background, must remove from
acceptance

@ Collimators degrade e~ energy by > 20 MeV

o Test with #°Ca target during PREx-II

C-REX Target Geometry

48

upstream C trajectory of scattered particle downstream
s a <
blocker I blocker
BEAM
vertical spokes to beam dump
support window
upstream
window downstream
window
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Radiation Impact
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e CREX is at higher beam energy (more forward peaked), target
is half rad. thickness

@ Radiation simulations show several times smaller than
PREX-II (about order of magnitude per electron)

@ Further simulations will be performed to optimize any
shielding
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Beam Request and Proposed Data

Energy 2.2 GeV Production 35 days
Current 150 pA Commissioning 5 days
Polarization  Full, ~ 85% Pol, calib., At 5 days

@ 150 pA available with ~ 50 pA for remaining halls

@ Require full longitudinal and (vertically) transverse beam

Measured Asymmetry (pe A) 2 ppm
Scattering Angle 4°
Detected Rate (each HRS) 140 MHz
Statistical Uncertainty of Apy | 2.1%
Systematic Uncertainty of Apy | 1.2%
Statistical Uncertainty of At 0.4 ppm
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Systematic Uncertainties

Charge Normalization | 0.1%

Beam Asymmetries 0.3% @ Statistics dominate total
Detector Non-linearity | 0.3% uncertainty
0,

-Il—gﬁgrsi\;zisisn 8;;’ e CREX more sensitive to Q?

. 0 .
Inelastic Contribution | 0.2% uncertainty than PREX, angular

g resolution demonstrated using
Effective @2 0.8% :
Total 1.2% elastic ep
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Conclusion

@ Neutron radius densities are challenging to measure, but
provide important information for nuclear structure and
astrophysics

@ Having these measurements available for a broad range of
masses is important to constraining isovector properties

@ Parity-violating electron scattering provides a clean method to
measure such a distribution

@ The CREX measurement aims to measure 6 R, to a precision
of 0.02 fm with 45 days
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BACKUP
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Transverse Asymmetries

@ Vertically transverse beam asymmetries sensitive to two
photon effects

@ Asymmetries are highly suppressed, few ppm for
Q@2 ~ 1072 GeV?
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@ Dispersion calculations: agreement with low Z nuclei
o 298pPyp s significantly off - Coulomb distortions?
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High Current Running

Three main current limitation issues:

e Halls A and C have 1 MW power limit at beam dump (90 pA
at 11 GeV)

@ Injector RF power limits total current output to 200 A
@ Linac RF power limits total beam current to 465 uA

For 1 pass, 150 A beam, this leave 50 pA to the remaining halls
Quweak ran with 180 pA at parity-quality with much higher demands
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Power Deposited in Target Assembly

In blocker and window
Stand. [W/uA] Tapered [W/uA]
Total Deposited 0.40 0.19
Radiated out 1.64 0.03

For 150 uA, this corresponds to 60 or 30 W (20 W in window and
10-40 W in blocker)
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Dipole Polarizability

Dipole Polarizability oip
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Dipole Polarizability

CREX WS, March 17-19, 2013

Correlation Between Dipole Polarizability
and Neutron Skin Thickness
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J. Piekarewicz, W. Nazarewicz, et al,, PRCS5, 041302(2012)

0.168+0.022 fm

Dipole Polarizability (fim?)
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Precision given Beam Time/Current

Current [uA] Beam Time [days] dApv [%] dR [fm]

200 35 2.2 0.018
150 35 2.4 0.020
100 35 2.8 0.023
100 30 3.0 0.024

@ 1 MW power limit to A and C

@ RF power on the R100 cavity at injector has maximum 200 pA

@ RF power to linacs limit the total beam current in any linac to
465 pA

For 150 pA 1-pass 2.2 GeV to Hall A, that leaves up to 50 pA
5-pass for the remaining halls
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Optimize Kinematics

o Compete against falling rates with higher asymmetry as Q2

grows
@ Need to optimize to sensitivity of A to marginal changes in
radius
[ C-REX: Sensitiviy to 1% change in Neutron Radius | [ C-REX: Absolute Error in Neutron Radius |
E dA/A for 1% changein Rn 00341
E drR(fm)E
dAA _E 00%2E
o 7E 003F
g : o
5¢ . oozaf
42 0024f
i oo .
Zf 0. f b
oorsf
25 35 65 005 35

15 55 4 15 55
0 (scattering angle) 0 (scattering angle)

dA/A \?
_ 2
FOM = R x A® x <an/Rn>

e Nominally maintain same Q? if considering different angle
@ 0 =45° E=1.96 GeV
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Parity Quality Beam

@ Requirements less strict than PREx
o Higher Q% (x2), larger asymmetry (x4)
o Cross section changes x6 more slowly with angle

@ Requirements less strict than Qyeax, also high current

Asymmetry vs. BPM Helicity Difference TA=9.973 +/-10:626 i, dof=60, ;= 0.97, P=054
dif_bPM12X 14y INWien L A=29.857 +/- 11230 nm, dof=72, 1°= 1.18, P=0.14
C 0. WP OUT/Wien R A=17.966 +/- 10.907 0f=100, 3= 1.04, P=0.37
1500 g p .
£ L AVG + A20879 3 096, P=0.61
£ E AVG- AS23.064 +1- 874 nm, dof=173 7= 1.10, P=0.19
sl F 1
£ 500" [
L 005 | } I { | f Al H
g of [, 1 | 1 | ;
£ ol [t ]
7500~ VT T J T T I T
 Seae £ %
1om0f- 0.05" {
T E ‘ . ‘ ‘ ‘
200 150 100 -50 O 0 100 0 2
R R R 15 20 25 30 35 40

@ Use double-Wien, HWP insertions to control systematics
@ PREX demonstrated corrections < 40 ppb, dx < 4 nm

@ Polarization monitored to 1% with Moller and Compton
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