CREX: Measurements of the Neutron Radius of ⁴⁸Ca

Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the CREX Collaboration

June 17, 2013

Seamus Riordan CREX 1/22

Collaboration

Spokespeople

P. Gueye Hampson University

INFN Roma grappo collegato Sanisà and Italian Nacional Destiner of Health, Rome, Italy

> M. Capogni INFN Roma grappo collegaso Sanàd

and ENEA Canaccia, Rome, Daly

V. Betlini, A. Giusa, F. Mammoliti, G. Russo, M.L. Sperduto, C.M. Satera

D. McNulty, P. Cole, T. Forest, M. Khandaler Idaho Same University

C.I. Honwitz

Indiana University

M. Mihovikovič, S. Širca

Jožef Stefan Instinue and University of Ljubljana, Slovenia

A Glamadia

Kharkey Institute of Physics and Technology

T Holmstrom

Longwood University

S. Kowatski, R. Silwal, V. Safkosky

Massachasens Inninne of Technology

INFN - Seriore & Countie

Seamus Riordan* Juliette Mammei Dustin McNulty Robert Michaels Kent Paschke Paul Souder University of Massachusetts, Amherst University of Manitoba Idaho State University Jefferson Lab University of Virginia Syracuse University

nin, W.T.H. van Oers, S. Page E. Cisbani, A. del Dotto, S. Fruthani, F. Garibaldi

J. Mammei, J. Birchall, M. Gericke, R. Maharin, W.T.H. van Gers, S. Page University of Manisoba

> S. Riordan, P. Decowski, K. Kumar, T. Katz, J. Wexler University of Massachasetts, Amberg

K. Paschke, G.D. Cates, M. Dalton, D. Keller, X. Zheng University of Virginia

> P.A. Souder, R. Beminiwatha, R. Holmes Sumcuse University

R. Michaels, K. Allada, J. Benesch, A. Camsonne, J.P. Chen, D. Gaskell, J. Gonze, O. Hansen, D.W. Higinbotham, C.E. Keppel, J. LeRone, B. Moffit S. Nanda, P. Solvignon-Silfer, B. Wojtsekhowski, J. Zhang Thomas Jefferson National Accelerator Facility

> Kourad Aniol California State University, Los Angeles

> > G.B. Franktin, B. Qainn Carnegie Mellon University

D. Watts, L. Zana The University of Edinburgh

P. Markowitz Torida International University M. Shabestari Mississippi State University

S.K. Phillips University of New Hampshire

E. Korkmar University of Novietta British Columbia

P. King, J. Roche, B. Waidyawama Ohio University

> C.E. Hyde Old Dominion University

E Meddi, G.M. Urciuoli Sapienza University of Rome and INFN - Sectione di Roma

> A. Blomberg, Z.-F. Maziani, N. Sparveris Temple University

M. Pitt Wrighta Polysechnic Institute and State University

D. Armstrong, J.C. Cornejo, W. Deccesinck, J.F. Dowd, V. Gray, and J. Magee College of William and Mary

> D. Androic University of Zapreb

and the Hall A Collaboration

- Introduction and Update
- Motivation
- Setup and Experiment
- Results and Uncertainties

Main Motivation

- Both proton and neutron distributions are important to understanding nuclear matter
- Calculations are difficult due to non-pQCD regime complicated by many-body physics
- Interesting for
 - Fundamental nuclear structure
 - Isospin dependence and nuclear symmetry energy
 - Dense nuclear matter and neutron stars
- Isovector properties not well constrained by binding energies must look at distributions within nuclei
- Proton distribution is relatively easy electromagnetic probes
- Neutron distribution is difficult
 - Weakly couples to electroweak probes
 - Hadronic probes have considerable uncertainty
 - Theory has range of $R_n R_p$ for various nuclei

Why ⁴⁸Ca and ²⁰⁸Pb?

- Why ⁴⁸Ca and ²⁰⁸Pb and not something else?
- What further measurements could be done?

These are the only choices available for such a program

- Require neutron excess
- Require spin-0
- Must have very long lifetime
- Require large inelastic state separation(3.8 MeV for ⁴⁸Ca)

No other nuclei meet these criteria

• Both nuclei will provide two points over a broad mass range and provide powerful tests when done together

New Developments since PAC39

• Successful theory workshop with over 20 presentations

http://www.jlab.org/conferences/crex/

J. Piekarewicz: A three-legged "isovector" stool: $R_n[^{48}Ca]; R_n[^{208}Pb]; \alpha_D[^{208}Pb]$

Organizing Committee: C. Horowitz (Indiana), K. Kumar (UMass), R. Michaels (JLab), W. Nazarewicz (UTK/ORNL), J. Piekarewicz (FSU)

Seamus Riordan CREX 6/22

New Developments since PAC39 (2)

 Neutron skin measurements on ²⁰⁸Pb and ⁴⁸Ca highlighted as important program

NSAC Subcommittee Report

Jefferson Lab uses a faint signal arising from parity violation induced by the weak interaction to measure the radius of the neutron distribution of stable lead and calcium nuclei. Studies of neutron skins in heavy nuclei at both FRIB and Jefferson Lab, and investigations of high-frequency nuclear oscillations and intermediate energy nuclear reactions with a range of proton and neutron-rich nuclei will help pin down the behavior of nuclear matter at densities below twice typical nuclear density

- Refined systematic errors and simulations with deeper analysis
- \bullet Updated projected uncertainty from 0.03 \rightarrow 0.02 ${\rm fm}$

Importance of Neutron Densities

Constraints on neutron EOS

B. Alex Brown, PRL 85, 5296 (2000)

• Slope of EOS can be used to constrain DFTs

 \bullet Correlated to ρ dependence of symmetry energy

Seamus Riordan CREX 8/22

Density Functional Theory

- PREX constrains slope of symmetry energy
- A correlation is predicted between ⁴⁸Ca and ²⁰⁸Pb, but needs to be tested in DFT framework

- Model spans suggest values between Ca and Pb, need to be tested, correlation isn't good, may have systematic assumptions across all models
- A successful test would build confidence in extending isovector observables across the periodic table
- Disagreement would mean something is missing isovector and surface energy contribution strengths not well understood? models incomplete?

Intermediate Mass Nuclei as a Bridge

Theory TAC Review

...this and the complementary one in ²⁰⁸Pb are important measurements for constraining, on the one hand, inputs to nuclear DFT phenomenologies and, on the other, inputs to nuclear dynamics-the modeling of three-neutron forces-in microscopic approaches.

- Data from medium-sized nuclei can act as a bridge between light-nuclei ab initio calculations and heavy nuclei DFT
- Isovector observables are not easily accessible and typically poorly constrained
- Facilities like FRIB will study nuclei with very large neutron skins and halos, need CREX and PREX to reliably anchor those measurements

Coupled Cluster Models

G. Hagen et al.,

Phys. Rev. Lett 109 032502 (2012)

- Coupled cluster models just becoming computationally feasible, but are still preliminary
- G. Hagen of ORNL awarded early-career award to do these calculations
- 3-neutron forces have an effect on isovector properties, such as the neutron skin
- Agreement with calculations would increase confidence in such calculations to be applied to other nuclei and is a test of such models
- Disagreement would mean something is missing, such as important terms in the expansion and models need to be refined

Accessing Neutron Radii in Nuclei

Hadronic Probes

- Elastic pN, $\vec{p}N$, nN, $\pi^{\pm}N$
- Alpha scattering
- Antiproton scattering

Have uncertainty in extraction due to strong force interactions

Complementary Methods

• GDR/dipole polarizability

Electroweak Probes

- Parity violating electron scattering
- Atomic parity violation
- "Clean" measurements, fewer systematics

Technically challenging due to small weak force interactions

Parity Violating Electron Scattering

- e^- also exchange Z, which is parity violating
- Primarily couples to neutron:

$$Q_{\mathrm{weak}}^{\mathrm{proton}} \propto 1 - 4 \sin^2 heta_{\mathrm{W}} pprox 0.076, \quad Q_{\mathrm{weak}}^{\mathrm{neutron}} \propto -1$$

- Detectable in parity violating asymmetry of electrons with different helicity
- In Born approximation, $Q^2 \ll M_Z^2$, from γZ interference:

$$A_{\rm PV} = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \left[1 - 4\sin^2\theta_W - \frac{F_n(Q^2)}{F_p(Q^2)} \right]$$

• For fixed target exp., typical $A_{\rm PV} \sim 10^{-7} - 10^{-4}$

Optimize Kinematics

- Compete against falling rates with higher asymmetry as Q^2 grows
- Need to optimize to sensitivity of A to marginal changes in radius

- For 2.2 ${\rm GeV}$ standard-energy beam, $\theta \approx 4^\circ$
- $\delta R_n \approx 0.02 \text{ fm}$ with 35 days beamtime and anticipated systematics

Experimental Configuration

- HRS's run simultaneously and symmetrically
- $A_{\rm PV} \sim 2$ ppm, comparable to previous generation HAPPEX-II
- Much less challenging than 0.5 ppm PREX

Septum Magnet

Septum Magnet Requirements

- HRS only go to 12.5°, require septum to reach 4°
- Sufficient hardware resolution must be maintained, need pure dipole
- Need to reach 1350 $\rm A/cm^2$ with 2-coil configuration
- Require new power supply, LCW pumps
- Target must be moved back for 4° acceptance, room is available without major reworking

HRS and Quartz Detectors

• HRS has hardware resolution 10⁻³, use to separate inelastic states

- Place quartz Cerenkov detectors to minimize inelastics
- Several states, but kept to < 0.5%. Asymmetries calculable to some level and are expected to be benign

⁴⁸Ca Target

- $\bullet~1~{\rm g/cm^2},\,5\%$ radiator (much less than PREX!)
- Factor 20 safety margin in beam current to avoid target melting due to higher conductance, smaller dE/dx, and higher melting point
- Oxidizes when exposed to air, must remain isolated
- Al end windows contribute background, must remove from acceptance
- $\bullet\,$ Collimators degrade e^- energy by $> 20\,\,{\rm MeV}$
- Test with ⁴⁰Ca target during PREx-II

C-REX Target Geometry

Radiation Impact

- CREX is at higher beam energy (more forward peaked), target is half rad. thickness
- Radiation simulations show several times smaller than PREX-II (about order of magnitude per electron)
- Further simulations will be performed to optimize any shielding

Energy	2.2 GeV	Production	35 days
Current	150 μA	Commissioning	5 days
Polarization	Full, $\sim 85\%$	Pol, calib., A _T	5 days

- 150 μA available with \sim 50 μA for remaining halls
- Require full longitudinal and (vertically) transverse beam

Measured Asymmetry $(p_e A)$	2 ppm
Scattering Angle	4°
Detected Rate (each HRS)	140 MHz
Statistical Uncertainty of A _{PV}	2.1%
Systematic Uncertainty of A_{PV}	1.2%
Statistical Uncertainty of A_T	0.4 ppm

Charge Normalization	0.1%
Beam Asymmetries	0.3%
Detector Non-linearity	0.3%
Transverse	0.1%
Polarization	0.8%
Inelastic Contribution	0.2%
Effective Q^2	0.8%
Total	1.2%

- Statistics dominate total uncertainty
- CREX more sensitive to Q² uncertainty than PREX, angular resolution demonstrated using elastic *ep*

- Neutron radius densities are challenging to measure, but provide important information for nuclear structure and astrophysics
- Having these measurements available for a broad range of masses is important to constraining isovector properties
- Parity-violating electron scattering provides a clean method to measure such a distribution
- The CREX measurement aims to measure δR_n to a precision of 0.02 fm with 45 days

BACKUP

Transverse Asymmetries

- Vertically transverse beam asymmetries sensitive to two photon effects
- Asymmetries are highly suppressed, few ppm for $Q^2 \sim 10^{-2}~{
 m GeV^2}$

Dispersion calculations: agreement with low Z nuclei
 ²⁰⁸Pb is significantly off - Coulomb distortions?

Three main current limitation issues:

- Halls A and C have 1 MW power limit at beam dump (90 μA at 11 GeV)
- Injector RF power limits total current output to 200 μA
- Linac RF power limits total beam current to 465 μA

For 1 pass, 150 μA beam, this leave 50 μA to the remaining halls $Q_{\rm weak}$ ran with 180 μA at parity-quality with much higher demands

Power Deposited in Target Assembly

In blocker and window							
	Stand. $[W/\mu A]$	Tapered $[W/\mu A]$					
Total Deposited	0.40	0.19					
Radiated out	1.64	0.03					

For 150 μ A, this corresponds to 60 or 30 W (20 W in window and 10-40 W in blocker)

Dipole Polarizability

Dipole Polarizability α_D

Seamus Riordan CREX 22/22

Dipole Polarizability

Current [μ A]	Beam Time [days]	$\delta A_{ m PV}$ [%]	<i>dR</i> [fm]
200	35	2.2	0.018
150	35	2.4	0.020
100	35	2.8	0.023
100	30	3.0	0.024

- 1 MW power limit to A and C
- RF power on the R100 cavity at injector has maximum 200 μA
- RF power to linacs limit the total beam current in any linac to 465 $\mu {\rm A}$

For 150 μA 1-pass 2.2 GeV to Hall A, that leaves up to 50 μA 5-pass for the remaining halls

Optimize Kinematics

- Compete against falling rates with higher asymmetry as Q^2 grows
- Need to optimize to sensitivity of A to marginal changes in radius

• Nominally maintain same Q^2 if considering different angle • $\theta = 4.5^{\circ}$, E = 1.96 GeV

Parity Quality Beam

- Requirements less strict than PREx
 - Higher Q^2 (×2), larger asymmetry (×4)
 - $\bullet\,$ Cross section changes $\times 6$ more slowly with angle
- ullet Requirements less strict than $Q_{
 m weak}$, also high current

- Use double-Wien, HWP insertions to control systematics
- PREX demonstrated corrections < 40 ppb, $\delta x < 4 \text{ nm}$
- $\bullet\,$ Polarization monitored to 1% with Moller and Compton

