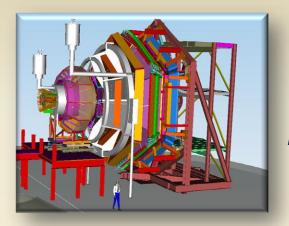
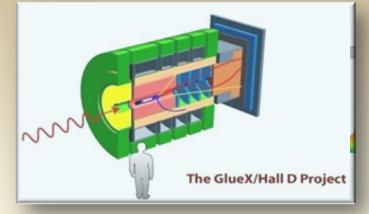

12 GeV Upgrade Project - Status

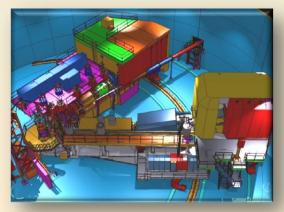
June 17, 2013

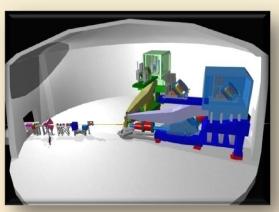
12 GeV Upgrade Project





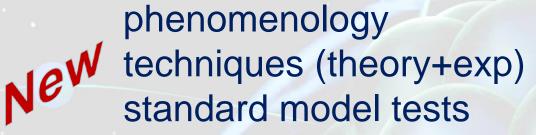
12 GeV Scientific Capabilities


Hall D – exploring origin of confinement by studying exotic mesons



Hall B – understanding nucleon structure via generalized parton distributions

Hall C – precision determination of valence quark properties in nucleons and nuclei



Hall A – form factors, future new experiments (e.g., SoLID and MOLLER)

12 GeV Science

Discovery Potential

Defining the Science Program:

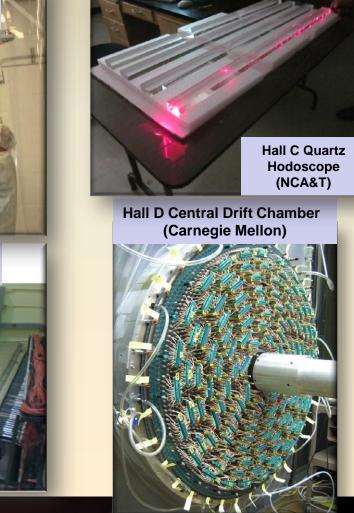
- Highest priority in 2007 NSAC Long Range Plan
- Eight Reviews: JLab Program Advisory Committees (PAC) 2006 through 2012
- Results: 52 experiments approved; 15 conditionally approved
- PAC40 scheduled June 2013
- White paper for 2012 NSAC subcommittee published

Experiments for 4 Halls approved for more than seven years of operation beginning in FY15

12 GeV Approved Experiments by PAC Days

Торіс	Hall A	Hall B	Hall C	Hall D	Total
The Hadron spectra as probes of QCD (GlueX and heavy baryon and meson spectroscopy)		119		120	239
The transverse structure of the hadrons (Elastic and transition Form Factors)	144	85	102		331
The longitudinal structure of the hadrons (Unpolarized and polarized parton distribution functions)	65	120	140		325
The 3D structure of the hadrons (Generalized Parton Distributions and Transverse Momentum Distributions)	409	982	108		1499
Hadrons and cold nuclear matter (Medium modification of the nucleons, quark hadronization, N-N correlations, hypernuclear spectroscopy, few-body experiments)	114	120	179		413
Low-energy tests of the Standard Model and Fundamental Symmetries	513			79	592
Total	1245	1426	529	199	3399

More than 7 years of approved experiments


Jefferson Lab

12 GeV Upgrade – Detector Highlights

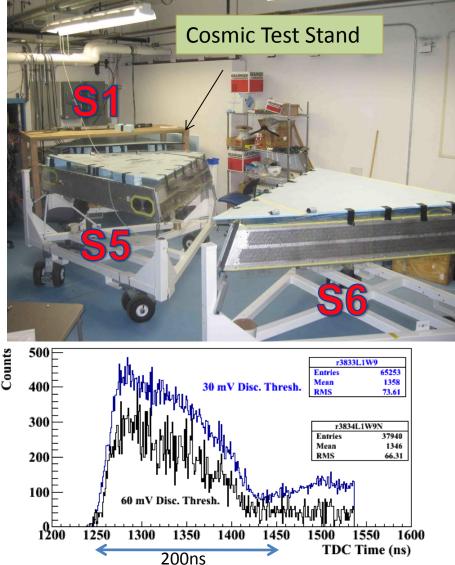
All major detector systems under construction; many undergoing testing

Hall B Drift Chamber Region 2 (Old Dominion U)

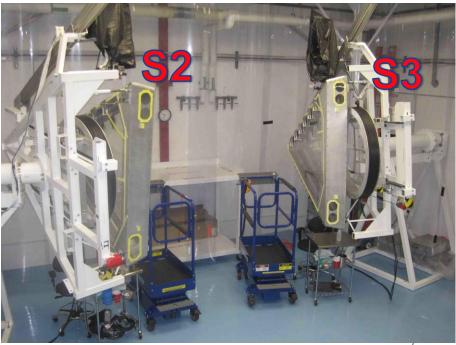
Hall D Forward Drift Chamber (JLab)

PAC40 6/17/2013

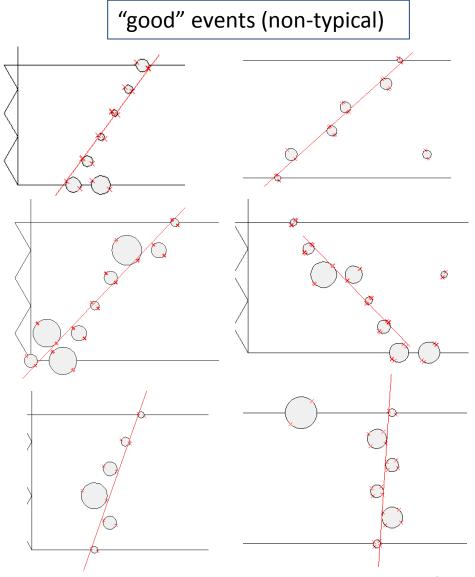
Region 1 (Idaho State U)


Hall B PCAL

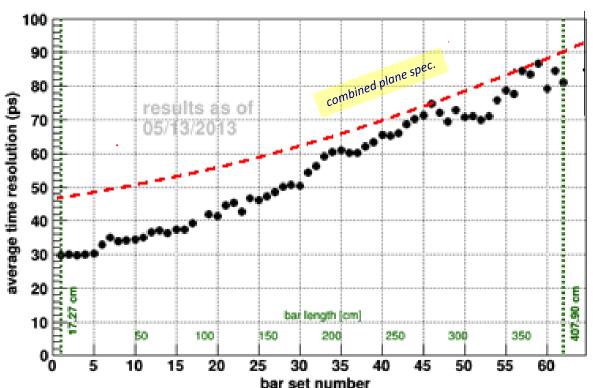
(JLab/OU)


an the state and a second state of the second

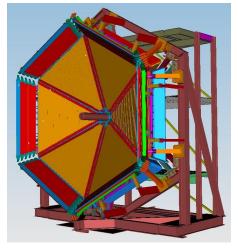
CLAS12 Drift Chambers (DC R1)


S1, S5, & S6 are strung
S1 ready for shipping
S5 & S6 ready for HV test
S2 & S3 stringing underway
Expected completion: August 2013

CLAS12 DC R2 - Cosmic Ray Tests

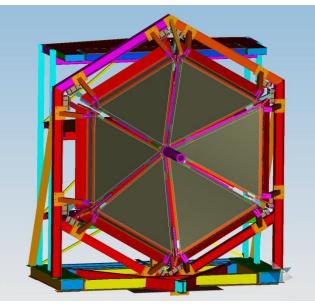

ODU – R2 sector, efficiency measured just over 98% at 2550V

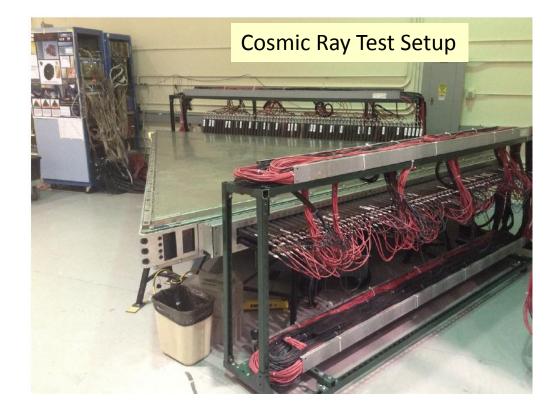
CLAS12 Forward ToF (FTOF)


 Panel 1a: Refurbishment and QA with cosmic rays completed at JLab

Panel 1b: Project developed, constructed and all scintillator bars tested at University of South Carolina

FTOF New Panel Time Resolution Measurements


Purpose: Provide timing information for charged particle id and separate pions, kaons and protons. Also used in fast trigger decision.

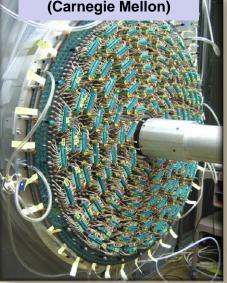

Panel-1b arrays:

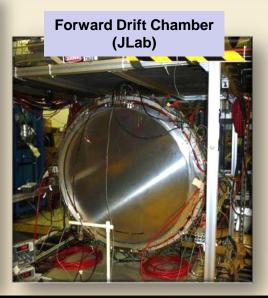
- 62 counters in 6 sectors
 L = 17 → 408 cm, 6 cm x 6 cm
 double-sided readout
 Hamamatsu R9779 PMTs
- all counters meet timing specs.
- Transport to JLab June 2013
- Ready for installation Jan. 2014

CLAS12 – Preshower Calorimeter (PCAL)

Purpose: Used primarily for id of electrons, photons, π^0 -> $\gamma\gamma$, and neutrons.

<u>Status</u>:


- All six PCAL modules are fully assembled.
- Five have been QA cosmic ray tested and are ready to be installed.
- Sixth module will be tested in June.
- It took two years and 6 months from the moment of receiving components to fully assemble and test all 6 modules of CLAS12 PCAL.


Hall D – Detector Highlights

Central Drift Chamber (Carnegie Mellon)

FSU – TOF scintillators, light guides CUA – tagger hodoscope UConn – tagger microscope UMass – F1TDC testing

Hall C – Highlights

DETECTORS (NSF-MRI funded):

<u>Hampton University</u> – past half-way point in stringing the second wire chamber assembly. The first chamber stack is under high voltage and signals from it are being studied.

<u>Univ of Virginia</u> - manufacturing design detailing for the noble gas Cerenkov continues, PMTs and mirrors are ordered.

<u>Univ of Regina</u> - The parts for the heavy gas Cerenkov counter are being readied at for shipment to Jefferson Lab, followed by assembly on-site planned for June 2013

Q1 Magnet Yoke Stack complete at SMI, UK

12 GeV Spectrometer SC Magnets

Hall C SHMS:

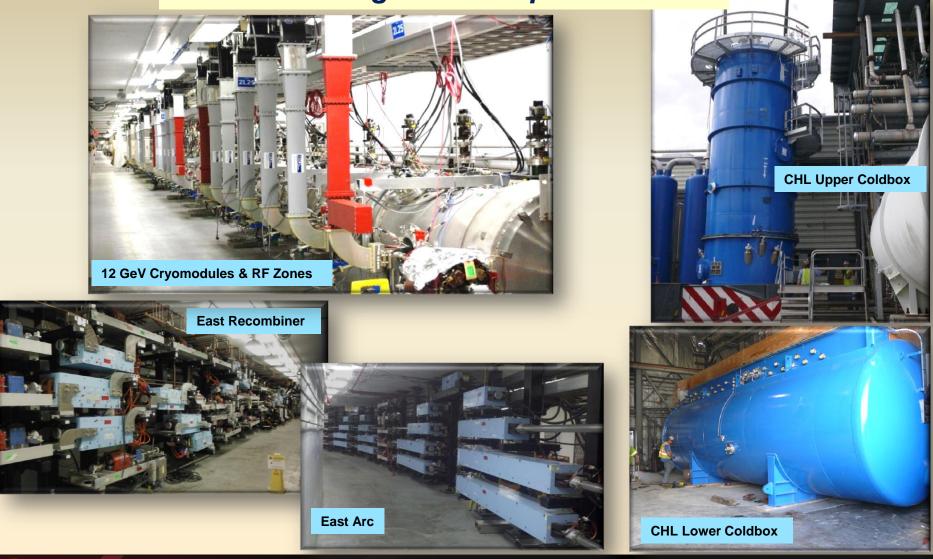
- HB Michigan State Univ making good progress
- Q1 Scientific Magnetics, UK all 4 coils built, assembly to be done at nearby subcontractor
- D/Q2/Q3 Sigma Phi, France coil winding procedures including conductor pre-compression under development

Hall B CLAS12:

- Torus FNAL start of prototype coil winding this week; JLab design effort & cryostat factory making solid progress
- Solenoid Everson Tesla, PA, Intermediate Design Review scheduled for June 26, 2013.

Hall D:

 Solenoid – successfully tested at 1500A, quench requiring re-assessment of procedures before tests start again, future refrigerator repair required


CLAS12 Torus coil winding table at FNAL

12 GeV Upgrade - Accelerator Highlights

Commissioning start – September 2013

Jefferson Lab

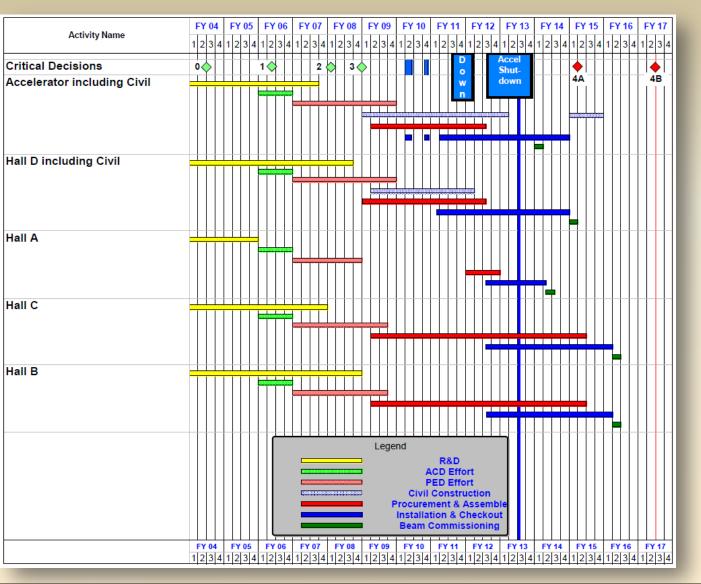
SRF Technology: Production for CEBAF

- Ten C100 cryomodule production for 12 GeV successfully completed (last 3 in the new TLA)
- C100 testing in CMTF (Cryo-Module Test Facility) completed on June 6, 2013

- All ten C100 cryomodules installed in the tunnel
- Commissioning of C100 in the tunnel progresses well, 6 done, 4 to go
- Re-commissioning of C20 and C50 (6 GeV CEBAF cryomodules) being performed in parallel with C100 commissioning
- The gradient improvement program for the C50 has started:

- First improved C50 will be ready for commissioning with beam (start in mid Nov 2013).
- Plan is to rework one C50/year during 12 GeV CEBAF operations.

Accelerator Status


- <u>RF Power</u>: ahead of cryomodule commissioning
- <u>Magnet Power</u>:
 - Trim PS arriving (50 of 260)
 - Box PS supplies: Arc 1 about to ship; Arc 2/Hall A about to start test
- <u>Cryogenics</u>: CHL2
 - Met the commissioning performance goals

- <u>Extraction</u>:
 - Installation of rf components underway in service building
- <u>I&C</u>: Controls software nearly complete; Safety systems ready for beam
- Beam Transport:
 - Arcs: East Arc final aligned; West Arc being final aligned
 - Hall A/Hall B/Hall C: HA dipole measurements complete
 - Hall D: dipoles going in

12 GeV Upgrade Project Schedule

FY12: reduction of \$16M FY13: no restoration

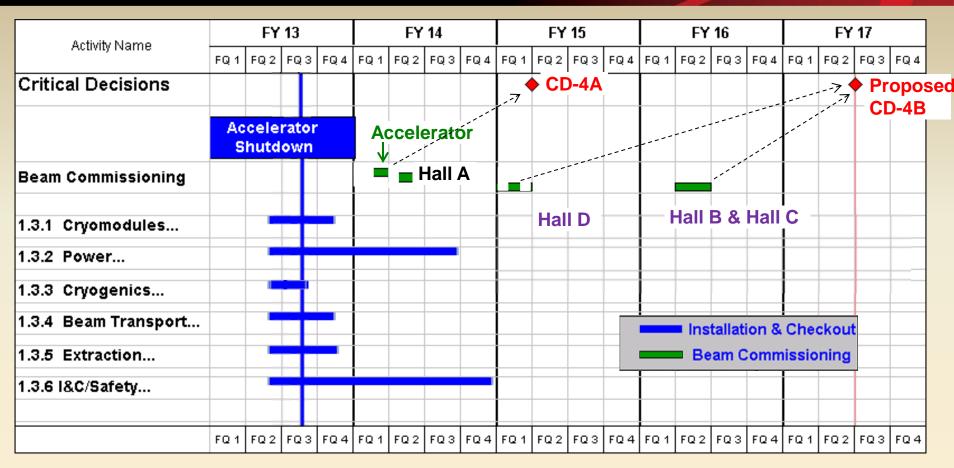
Present expectation (subject to rebaseline approval in August):

16-month installation May 2012 - Sept 2013

Accelerator commissioning start Oct 2013

Hall A commissioning start Feb 2014

Hall D commissioning start Oct 2014


Halls B & C commissioning start Jan/Feb 2016

Project Completion March 2017

> Information based on DOE Project Review May 7-9, 2013

12 GeV Project Schedule

- Cryomodules, Cryogenics, Beam Transport, and Extraction will be complete in FY13
- Power and I&C deliveries extend into FY14 but will not affect commissioning schedule

12 GeV Upgrade Project Status

Project 77% Complete, 91% Obligated

• Civil (92%) ; Accelerator (91%) ; Physics Equip (~62%)

Challenges with spectrometer superconducting magnets

- All 7 new magnets under contract
- Refurbished Hall D Solenoid being tested

Rebaseline meeting scheduled for August 9, 2013

- Implementation date September 1, 2013
- TPC = \$338M ; CD-4B March 2017

Hall D Interior

APPENDIX

CD4: Key Performance Parameters

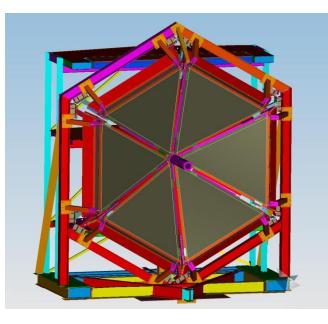
- CD-4 is phased
 - CD-4A: Accelerator and Conventional Facilities
 - CD-4B: Experimental systems

CD-4A, Deliverables / Key Parameters						
Subsystem	Technical Definition of Completion					
Accelerator	12 GeV capable 5.5 pass machine installed					
Accelerator	11 GeV capable beamline to Halls A, B, and C					
	installed					
Accelerator	12 GeV capable beamline to Hall D tagger area					
	installed					
Accelerator	Accelerator commissioned by transporting $a \ge 2 nA$					
	electron beam at 2.2 GeV (1 pass)					
Conventional	New Experimental Hall and the Counting House: $\geq 10,500$ square feet					
Facilities	\geq 10,500 square feet					

12 GeV Accelerator Schedule (details)

Astivity blows	FY 13		FY 14			FY 15							
Activity Name		FQ 2	FQ3	FQ 4	FQ 1	FQ 2	FQ3	FQ 4	FQ 1	FQ 2	FQ 3	FQ 4	
Critical Decisions								CD	4A 🖣				
		celer			A	ccel	erat	or					
	S	hutdo	own	_	V		Hall	Λ					
Beam Commissioning					1			^	illo	Ha	ll D		
1.3.2 Power					, ,				!				
RF Systems				;	;'			11					
Magnet Power Systems				/	;		1						
Box supplies				/	/		11	!			6	-mo	onths
Box PS Vendor Fabrication				<i>;</i>	; , ;		-/	į			S	che	dule
Vendor Estimated Delivery #1-				/		1	;	1		\leftarrow		oat	
Vendor Estimated Delivery #2-					1			;					
Vendor Estimated Delivery #3-						1	;	;			C	D-4	IA
Vendor Estimated Delivery #4-						×	/						
Box PS Installation and Test					: 		- /						
Box PS Integration & Test							-						
Small supplies							<i>!</i>						
1.3.6 I&C/Safety							;						
Beam Diagnostics 1.3.6.1							ĺ						
nA Beam Position Monitors						<u> </u>			F	1	Not r	need	ed for Hall D
Harps, Viewers, & stripline bpm's													mmissioning
Fast Feedback System						<i>:</i>			K	C	or C[D4	
Control System Hardware 1.3.6.2						-{							
Control System Software 1.3.6.3						;				1.6			
Safety Systems 1.3.6.4						i ←					r Ha		
Beam Dumps 1.3.6.5							De	eam	com	imis	sion	ing	
Hall D Dump Electronics													
Insertable Dump Electronics													
Magnet Instrumentation 1.3.6.7													

Forward Time-of-Flight (FTOF)

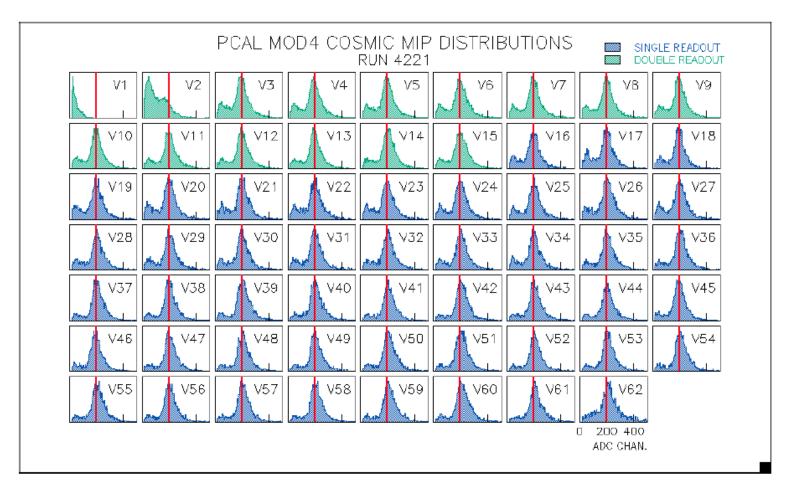

USC, JLab

Purpose: Provide timing information for charged particle identification and separate pions, kaons and protons. Will also be used in fast trigger decision.

PARAMETER	DESIGN VALUE
Panel-1a:	
Angular Coverage	θ : 5° \rightarrow 35°, ϕ : 50% at 5° \rightarrow 85% at 35°
Counter Dimensions	L = 32.3 cm → 376.1 cm, w x h = 15 cm x 5 cm
Scintillator Material	BC-408
PMTs	EMI 9954A, Philips XP2262
Design Resolution	90 ps → 160 ps
Panel-1b:	
Angular Coverage	θ : 5° \rightarrow 35°, ϕ : 50% at 5° \rightarrow 85% at 35°
Counter Dimensions	L = 17.3 cm → 407.9 cm, w x h = 6 cm x 6 cm
Scintillator Material	BC-404 (#1 → #31), BC-408 (#32 → #62)
PMTs	Hamamatsu R9779
Design Resolution	60 ps → 110 ps
Panel-2:	
Angular Coverage	θ: 35° → 45°, φ: 85% at 35° → 90% at 45°
Counter Dimensions	L = 371.3 cm → 426.2 cm, w x h = 15 cm x 5 cm
Scintillator Material	BC-408
PMTs	EMI 4312KB
Design Resolution	110 ps → 150 ps
PID:	
π/K Separation	4σ separation up to 2.8 GeV
K/p Separation	4σ separation up to 4.8 GeV
π/p Separation	4σ separation up to 5.4 GeV

Status: Panel 1a: Refurbishment and QA with cosmic rays completed at JLab. Panel 1b: All counters assembled and QA cosmic ray tested at USC. Panel 2:

CLAS12 – Preshower Calorimeter (PCAL)


Purpose: Calorimeters in CLAS12 will be used primarily for identification of electrons, photons, π^0 -> $\gamma\gamma$, and neutrons.

PARAMETER	DESIGN VALUE
Calorimeter type	Sampling, lead-scintillator
Number of modules	6
Coverage area	45 meter square
Distance from the target	7 meters
Angular coverage	5º to 35º
Number of scintillator layers	15 per module
Number of stereo readout views	3 (5 scintillator layers per view)
Number of readout channels	196 per module
Number of scintillator strips	1200 per module
Scintillator strips	1x4.5 cm ² extruded (FNAL) with two holes
Lead sheets	2.2 mm thick, triangular shape (two pieces)
Scintillator lengths	2.5 cm to 432 cm
Readout via WLS fibers	1 mm diameter, 4800 fibers per module
Readout	PMT, Hamamatsu R6095
Expected Performance	VALUE
Energy resolution	10%/VE (with EC)
Position resolution	0.5 cm
Time resolution	500 ps

Status: All six PCAL modules are full assembled and five have been QA cosmic ray tested and ready to be installed. Remaining sixth module will be tested in June. It took two years and 6 months from the moment of receiving components to fully assemble and test all 6 modules of CLAS12 PCAL.

CLAS12 – PCAL Cosmic Ray Test

Result of HV gain matching of light yield at fixed distance from PMT

Run 4221 (LC1881) Run 4289 (FADC)