Measuring the Charged Pion Polarizability in the $\gamma\gamma{\rightarrow}\pi^+\pi^-$ Reaction

A proposal to the 40th Jefferson Lab Program Advisory Committee Spokespersons: D. Lawrence, R. Miskimen, E. Smith

- Pion polarizability
- Experimental setup
- Backgrounds
- Muon detection system
- Analysis
- Projected results

Proton electric polarizability

Proton between charged parallel plates

Compton Scattering and the E.M. polarizabilities

Crossing symmetry (x \leftrightarrow t): Compton scattering $\longleftrightarrow \gamma\gamma \rightarrow \pi^+\pi^-$

$$\frac{d^2 \sigma_{\text{Primakoff}}}{d\Omega dM} = \frac{2\alpha Z^2}{\pi^2} \frac{E_{\gamma}^4 \beta^2}{M} \frac{\sin^2 \theta}{Q^4} \left| F(Q^2) \right|^2 \left(1 + P_{\gamma} \cos 2\varphi_{\pi\pi} \right) \sigma(\gamma\gamma \to \pi\pi)$$

Low energy QCD and pion polarizability

$$L_{QCD}(p^4) = L^{chiral-even}(p^4) + L^{chiral-odd}(p^4)$$

Charged pion polarizability $\alpha_{\pi} = -\beta_{\pi} = \frac{4\alpha}{m_{\pi}F_{\pi}^{2}} \left(L_{9}^{r} - L_{10}^{r}\right)$

P⁶ corrections are small $\alpha_{\pi} - \beta_{\pi} = (5.7 \pm 1.0) \times 10^{-4} \text{ fm}^3$ $\alpha_{\pi} + \beta_{\pi} = (0.16 \pm 1.0) \times 10^{-4} \text{ fm}^3$ $\pi^{0} \to \gamma \gamma$ $A_{m} = \frac{\alpha N_{C}}{\alpha N_{C}}$

$$^{\prime\prime}$$
 $3\pi F_{\pi}$

Primex result $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.80 \text{ eV} + 2$

 $\Gamma(\pi^0 \rightarrow \gamma \gamma) = 7.80 \text{ eV} \pm 2.8\%$

Pion Polarizability Measurements

Proposed Detector Setup

Micro-tagger moved from 9.0 GeV to 6.0 GeV to increase polarization from 44% to 76%, and ratio of coherent/incoherent Brem. from .068 to 0.32

Electron energy	12.0 GeV	Peak polarization	76%
Electron current	50 nA on 20 μm diamond	Coherent/incoherent	0.32
Coherent peak	5.5-6.0 GeV	Target position	1 cm
Collimator	3.5 mm	Target	¹¹⁶ Sn, 5% RL

TRIGGER = FCAL, $E_{th} = 250 \text{ MeV}$

Muon response in FCAL

Pion response in FCAL

 $E_{\mu 1} + E_{\mu 2} = 5.5 \, GeV$

 $E_{\pi 1} + E_{\pi 2} = 5.5 \text{ GeV}$

1. Incoherent $\gamma A \rightarrow \pi^+ \pi^- X$

2. Coherent $\gamma A \rightarrow f_0(600)$

4. γ**A→e⁺e- A**

5. $\gamma \mathbf{A} \rightarrow \mu^+ \mu - \mathbf{A}$

1. **Incoherent** $\gamma A \rightarrow \pi^+ \pi^- X$

2. Coherent $\gamma A \rightarrow f_0(600)$

3. $\gamma \mathbf{A} \rightarrow \rho^0 \mathbf{A}$

Lab azimuthal distribution of
$$\vec{k_1} + \bar{k}$$
 (1+P_ycos2 ϕ)

5. $\gamma A \rightarrow \mu^+ \mu - A$

 $\pi^+\pi^-$ invariant mass

1. Incoherent $\gamma A \rightarrow \pi^+ \pi^- X$

2. Coherent $\gamma A \rightarrow f_0(600)$

3. $\gamma \mathbf{A} \rightarrow \rho^0 \mathbf{A}$

- 4. γ**A→e⁺e- A**
- Azimuthal distribution of π^+ in helicity frame (1+P_ycos2 ψ)

Muon detector design

Muon detector:

Iron absorbers to initiate pion showers, followed by MWPC's to detect muons and shower products

Design work is in progress:

Developing Geant3 and Geant4 simulations of this geometery

Particle ID Summary

- Can't base particle ID on a single variable. Need to combine all sources of information about the event:
 - i. Particle momenta
 - ii. Energy in FCAL
 - iii. # hits in muon chambers
 - iv. track depths in muon chambers
 - v. x,y distribution of hits in muon chambers
- Use Multi-Variate Analysis (MVA) to map the point in Ndimensional space to a probability value that can be used to classify the type of event.

MVA Classification Examples

Multi-Variate Analysis for 2 GeV π + and μ +

Summary of the Muon System

- We conclude that a particle ID system based on MWPCs and iron absorbers + FCAL can deliver the $\pi/\mu/e$ separation required
- Need to optimize the size of the detector, the number of detector planes, the total iron thickness, and *neural net/boosted decision tree* algorithms
- Use MWPC's operating in proportional mode: cheap, relatively easy to construct, high eff. for MIP.
- Channel estimate: assume cell spacing = 4 cm, four MWPC packages with x, y planes, $2 \times 2 m^2$, = 400 total cells.
- Electronics readout: borrow 25 FADC' modules + ancillary electronics + crates. Need a relatively cheap preamp card on the MWPC's.

Analysis

- 1. Identify candidate events based on kinematic cuts
 - a) $E_1 + E_2 = E_{\gamma}$
 - b) $0.3 < W_{12} < 0.5 \text{ GeV}$
 - c) $\Theta_{12} < 0.6^{\circ}$
 - d) $\pi\pi$ = event with no identified muon
 - e) $\mu\mu$ = event with at least one identified muon

2. Subtract backgrounds from yields

$$N_{\pi\pi} = N_{\pi\pi-candidate} - f_{bad-\mu\mu(\pi\pi)} N_{\mu\mu} + f_{bad-\pi\pi(\mu\mu)} N_{\pi\pi} - f_{bad-\pi\mu(\pi\pi)} f_{\pi\to\mu\nu} N_{\pi\pi}$$

$$N_{\mu\mu} = N_{\mu\mu-candidate} + f_{bad-\mu\mu(\pi\pi)} N_{\mu\mu} - f_{bad-\pi\pi(\mu\mu)} N_{\pi\pi} - f_{bad-\pi\mu(\mu\mu)} f_{\pi\to\mu\nu} N_{\pi\pi}$$

 $f_{bad-\mu\mu(\pi\pi)}$ = probability for $\mu\mu$ event to ID as $\pi\pi$ event ~ 0.002 muon contamination $f_{bad-\pi\pi(\mu\mu)}$ = probability for $\pi\pi$ event to ID as $\mu\mu$ event ~ 0.05 pion inefficiency $f_{bad-\pi\mu(\pi\pi)}$ = probability for $\pi\mu$ event to ID as $\pi\pi$ event ~ 0.05 $f_{bad-\pi\mu(\mu\mu)}$ = probability for $\pi\mu$ event to ID as $\mu\mu$ event ~ 1 $f_{\pi\to\mu\nu}$ = probability for pion decay = 8%

Determine probabilities *f* with data and simulation

Analysis

3. Azimuthal fits to pion yields

Lab frame distribution of $\vec{k}_1 + \vec{k}_2$ $N_{\pi\pi} = N_{\text{Primakoff}} \left(1 + P_{\gamma} \cos 2\phi_{\pi\pi}\right) + N_{\rho}$

Helicity frame distribution of π^+

$$N_{\pi\pi} = N_{\rho} (1 + P_{\gamma} \cos 2\psi) + N_{\text{Primakoff}}$$

4. Form ratio with muon yields

Errors and correction factors	Correction factor	Uncertainty in correction
Overall statistical error		0.6%
$\pi\pi$ inefficiency	5%	0.5%
μμ contamination	2%	0.5%
polarization	70%	0.5%
Strong form factor	4%	0.6%
Acceptance	0%	0.5%
Trigger	0%	0.5%
Coulomb correction	1%	0.5%
Total error		1.5%
Projected error in α - β		± 0.6 × 10 ⁻⁴ fm ³

Summary

- The charged pion polarizability is predicted by $L_{QCD}(p^4)$. The NLO corrections to $\alpha-\beta$ are small.
- The charged pion polarizability ranks as one of the most important tests of low-energy QCD unresolved by experiment.
- We have proposed to measure the charged pion polarizability $\alpha-\beta$ by measurement of $\gamma\gamma \rightarrow \pi^+\pi^-$ cross sections in the threshold region
- 20 days are requested for running, and 5 days for commissioning. The projected uncertainty in α - β is at the level of \pm 0.6×10⁻⁴ fm⁴, equal to the PDG error on the proton electric polarizability.
- Changes to the standard GlueX setup:
- i. muon counter/iron absorber system installed after FCAL, approx. 400 electronics channels
- ii. solid target installed near the upstream end of the GlueX magnet.
- iii. move the microtagger from 9.0 GeV to 6.0 GeV to increase photon polarization, and ratio of coherent/incoherent bremstrahlung.

 $\gamma\gamma \rightarrow \pi^+\pi^-$

1 GeV muon

1 GeV pion

Muon detectors

FCAL

Geant3 Simulations

2 GeV muon

2 GeV pion

Muon detectors

FCAL

Geant3 Simulations

3 GeV muon

3 GeV pion

Muon detectors

FCAL

Geant4 calculaton of dE/dx in the MWPCs

 π^+

Number of hits in all MWPCs (8 layers)

Pion showers tend to be absorbed in iron, not necessarily leading to many hits in MWPCs Conclusion: may need more sampling layers