Exclusive Deeply Virtual Compton and π^0 Cross-Sections Measurements in Hall C

Carlos Muñoz Camacho

Institut de Physique Nucléaire, Orsay, France

PAC 40 June 17–20, 2013

NPS Collaboration proposal

A. Camsonne, S. Covrig, R. Ent, D. Gaskell, F.X. Girod, M. Jones,¹ C. Keppel, P. Nadel-Turoński, A. J. R. Puckett, B. Sawatzky,¹ P. Solvignon, S.A. Wood,
B. Wojtsekhowski,¹ A. Asaturyan, A. Mkrtchyan, H. Mkrtchyan, V. Tadevosyan,
S. Zhamkochyan,² M. Boer, C. Desnault, R. Dupré, B. Garillon, M. Guidal,
M. Hattawy, H.S. Jo,³ A. Martí Jimenez-Argüello, C. Muñoz Camacho^{†*}, S. Niccolai,
R. Paremuzyan^{*,3} M. Defurne, M. Garçon, F. Sabatíć,⁴ I. Albayrak, M. Carmignotto,
J. Dénes-Couto, N. Hlavin, T. Horn^{*},⁵ F. Klein, B. Nepal,⁵ M. Canan, C. Hyde^{*},
M.N.H. Rashad,⁶ P. King, J. Roche^{*},⁷ M. Ben Ali, L. Ghedira, M. Mazouz,⁸ A. Fradi,⁹
D. Day, D. Keller, O. Rondon,¹⁰ J.R.M. Annand, D.J. Hamilton,¹¹ S. Sirca,¹² M. Elaasar,¹³
G. Huber,¹⁴ F. Wesselmann,¹⁵ P. E. C. Markowitz,¹⁶ A. Ahmidouch, S. Danagoulian,¹⁷
M. H. Shabestari,¹⁸ D. Androic,¹⁹ C. Chen, Y. Han, P. Gueye, L. Tang,²⁰ and V. Sułkosky²¹

'Jefferson Lab, Newport News, VA 23606 ²A.I. Alikhanuan National Science Laboratory, Yerevan 0036, Armenia ³Institut de Phusique Nucleaire d'Orsau, IN2P3, BP 1, 91406 Orsau, France ⁴SPhN (Saclay), CEA/DSM/IRFU, Gif-sur-Yvette, France ⁵The Catholic University of America, Washington, DC 20064 ⁶Old Dominion University, Norfolk, Virginia ⁷Ohio University, Athens, OH 45701 ⁸Faculté des Sciences de Monastir, Département de physique, 5000-Monastir, Tunisia ⁹Faculty of Sciences of Gabes, Department of Physics, 6072-Gabes, Tunisia ¹⁰University of Virginia, Charlottesville, VA, USA ¹¹University of Glasgow, Glasgow, Scotland, UK ¹²University of Ljubljana, Ljubljana, Slovenia ¹³Southern University at New Orleans 14 Univ. of Regina, Regina, SK S4S0A2, Canada ¹⁵Xavier University of Louisiana New Orleans ¹⁶Florida International University, Miami, FL 33199, USA 17North Carolina A&T State University, USA 18 Mississippi State University, USA 19 Faculty of Science, University of Zagreb 20 Hampton University, Hampton, VA 23668, USA ²¹Massachusetts Institute of Technology. Cambridge, Massachusetts 02139, USA

*Co-spokespersons [†]Contact person: munoz@ipno.in2p3.fr Introduction

DVCS experimentally: interference with Bethe-Heitler

At leading twist:

$$\begin{aligned} d^5 \overrightarrow{\sigma} - d^5 \overleftarrow{\sigma} &= \Im m \left(T^{BH} \cdot T^{DVCS} \right) \\ d^5 \overrightarrow{\sigma} + d^5 \overleftarrow{\sigma} &= |BH|^2 + \Re e \left(T^{BH} \cdot T^{DVCS} \right) + |DVCS|^2 \end{aligned}$$

$$\mathcal{T}^{DVCS} = \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi+i\epsilon} + \dots =$$

$$\mathcal{P} \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi} - \underbrace{i\pi H(x=\xi,\xi,t)}_{x-\xi} + \dots$$

Access in helicity-independent cross section

Access in helicity-dependent cross-section

Introduction

DVCS cross-section measurements

PRL97, 262002 (2006)

Accurate measurement of the DVCS:

- helicity-dependent $(d^4\Sigma)$ cross section for $Q^2 = 1.5$, 1.9, 2.3 GeV²,
- helicity-independent ($d^4\sigma$) cross section for $Q^2 = 2.3 \text{ GeV}^2$.

Carlos Muñoz Camacho (IPN-Orsay)

PR12-13-010: DVCS and Deep- π^0 in Hall C

4 / 22

Overview of DVCS program at JLab¹

Two complementary approaches:

- Survey measurements with large acceptance device (CLAS+CLAS12): study of many different observables over a wide range of kinematics, but limited statistical and systematic uncertainties.
- Precision measurements in selected kinematic settings (Hall A): test of scaling, higher twist corrections, L/T separation...

At 12 GeV the Hall A program is limited to the kinematics of approved experiment E12-06-114 (HRS: p < 4 GeV) :

Hall C (with the addition of a photon detector) is perfectly suited to carry out the ${\rm DVCS}/\pi^0$ precision program

¹Summary document on exclusive program submitted to PAC40

Introduction

Motivation #1

The $\mathcal I$ and DVCS² terms mix as a function of the azimuthal angle φ , but:

• $\mathcal{R}e(\mathcal{I}) \propto 1/y^3 = (E_b/\nu)^3$

•
$$\mathcal{D}VCS^2 \propto 1/y^2 = (E_b/\nu)^2$$

PR12-13-010 physics goals

- Beam energy dependence of cross section:
 - $\bullet\,$ Separation of the $|\mathsf{DVCS}|^2$ and $\mathcal{I}(\mathsf{BH}{\cdot}\mathsf{DVCS})$ from DVCS cross section

Overview

• L/T separation of π^0 cross section

Unique to Hall C

Proposed at 6 GeV in Hall A (E07-007) –*preliminary results will be shown*–, but at 12 GeV the high momentum reach of Hall C HMS is essential

2 Increase the Q^2 reach to even higher values at fixed x_B

Physics case

Allowed by the use of a sweeping magnet: smaller calorimeter $\boldsymbol{\theta}$ permitted

③ Expand the kinematic coverage at smaller values of x_B

Allowed by the use of a sweeping magnet: smaller calorimeter θ permitted

Kinematics

Kinematics coverage

<u>Kinematics</u> coverage

Kinematics coverage

Kinematics

Kinematics coverage

Kinematics

Kinematics: combined Hall A and Hall C coverages

Experimental setup

- HMS (p < 7.3 GeV): scattered electron
- PbWO₄ calorimeter: γ/π^0 detection
- Sweeping magnet

Neutral Particle Spectrometer (NPS) Photon detector

PbWO₄ electromagnetic calorimeter

Design based on HYCAL detector

• 58×70 cm² detector: 1116 PbWO₄ crystals (2×2 cm² each)

- Temperature controlled frame
- "Hall-D" 250 MHz flash ADC to record PMT waveforms

Neutral Particle Spectrometer (NPS) Photon detector

0.5

Exclusivity: $ep \rightarrow e\gamma X$ missing mass squared (M_X^2)

Higher light yield of PbWO₄ (compared to PbF₂) significantly improves the M_X^2 resolution

0.5

1.5

MM² GeV²

M_v² (GeV²)

Kinematics

	Energy Dependence at fixed (Q^2, x_B)						Low-x _B			High- Q^2									
xB			0.36				0.50			0.	60		0.2			0.36	0.50	0.60	
$Q^2 ({\sf GeV})^2$		3.0		4.	.0	3	.4	4.8		5.1		6.0		2.0		3.0	5.5	8.1	10
k (GeV)	6.6*	8.8	11	8.8*	11	8.8	11	11	6.6	8.8*	11	11	6.6	8.8	11	11		11	
k' (GeV)	2.2	4.4	6.6	2.9	5.1	5.2	7.4	5.9	2.1	4.3	6.5	5.7	1.3	3.5	5.7	3.0	2.9	2.4	2.1
$\theta_{Calo}(deg)$	11.7	14.7	16.2	10.3	12.4	20.2	21.7	16.6	13.8	17.8	19.8	17.2	6.3	9.2	10.6	6.3	7.9	8.0	8.0
$D_{Calo}(m)$	3	3	3	4	3	3	3	3	3	3	3	3	6	4	4	6	4	4	4
I_{beam} (μ A)	28	28	28	50	28	28	28	28	28	28	28	28	11	5	50	11	50	50	50
N _{evt} (10 ⁵)	1.5	8.8	8.2	2.1	7.9	7.3	11	5.1	0.2	0.2	2.7	2.6	3.5	3.6	64	3.4	6.1	0.8	0.4
$\sigma_{M_X^2}(\text{GeV}^2)$	0.13	0.13	0.12	0.15	0.15	0.09	0.09	0.11	0.09	0.09	0.09	0.09	0.17	0.17	0.17	0.22	0.19	0.15	0.13
Days	1	2	1	1	3	3	2	5	5	1	5	10	1	1	1	1	5	5	12

• $\sim 3-10\cdot 10^5$ counts in a 0.01 ${\rm GeV^2}$ bin in $t \Rightarrow$

1-2% statistical precision per ϕ -bin.

- Less statistics are needed in cross-check points (DIS cross section)
- Compromise at high Q^2/x_B to obtain valuable physics results, despite being statistically limited

Total request: 65 days of beam

* 3 cross-checks with Hall-A kinematics (3 days total)

Projections DVCS

DVCS: Energy separation setting $(Q^2 = 3.4 \text{ GeV}^2, x_B = 0.5)$

Projections DVCS

DVCS: high- Q^2 and low- x_B extension

$$Q^2 = 10 \text{ GeV}^2$$
, $x_B = 0.6$

$$Q^2 = 3 \text{ GeV}^2$$
, $x_B = 0.2$

E07-007

E07-007 missing mass

E07-007

E07-007: DIS normalization check

Carlos Muñoz Camacho (IPN-Orsay) PR12-13-010: DVCS and Deep- π^0 in Hall C PAC40 – Jun 17–20, 2013

17 / 22

E07-007

E07-007 preliminary results

$$Q^2 = 1.5 \,\, {
m GeV^2}$$
, $x_B = 0.36$

 $E_b = 5.552 \text{ GeV}$

- Large contribution of DVCS² to the total cross section
- Significant relative variation with E_b

Preliminary results not shown in online version

18 / 22

$$E_b = 3.355 \,\,\mathrm{GeV}$$

- Final normalization checks ongoing
- Other Q^2 settings under analysis

The energy dependence of the cross section is an essential and powerful tool for the DVCS program

Carlos Muñoz Camacho (IPN-Orsay) PR12-13-010: DVCS and Deep- π^0 in Hall C PAC40 – Jun 17–20, 2013

π^0 electroproduction cross section

Data taken concurrently with DVCS

Deep π^0

- Current data hint to a significant contribution of the transverse part
- No L/T separated cross section available

- If σ_L is large: access to ordinary GPDs
- If σ_T is large: access to transversity GPDs

It is crucial to have σ_T and σ_L measured !

L/T separation projections

Projections assuming the GK model predictions

Deep π^0

- Hard scattering $R = \sigma_L / \sigma_T \sim Q^2$
- DIS $R = \sigma_L / \sigma_T \sim 1/Q^2$
- GK: Goloskokov & Kroll predictions (handbag)
- VGL: Vanderhaeghen, Guidal, Laget predictions (Regge)

Deep π^0

Systematic uncertainties

Source	pt-to-pt	scale		
	(%)	(%)		
Acceptance	0.4	1.0		
Electron PID	<0.1	<0.1		
Efficiency	0.5	1.0		
Electron tracking efficiency	0.1	0.5		
Charge	0.5	2.0		
Target thickness	0.2	0.5		
Kinematics	0.4	<0.1		
Exclusivity	1.0	2.0		
π^0 subtraction (for DVCS)	0.5	1.0		
Radiative corrections	1.2	2.0		
Total	1.8–1.9	3.8–3.9		

Summary

- \bullet Precision measurements of DVCS and deep π^0 cross sections
- Energy separation of the DVCS cross section
- L/T separation of the π^0 cross section
- High– Q^2 and low– x_B extension

Every observable measured as a function of Q^2 :

- Test of scaling
- Study of higher twist corrections

We request 65 days of beam, excluding set-up and detector check-out

Back-up

DVCS cross-section: $\varphi \& Q^2$

$$\mathcal{I} = \frac{i_0/Q^2 + i_1 \cos \varphi/Q + i_2 \cos 2\varphi/Q^2 + i_3 \cos 3\varphi/Q}{\mathcal{P}_1 \mathcal{P}_2}$$

DVCS² = $d_0/Q^2 + d_1 \cos \varphi/Q^3 + d_2 \cos 2\varphi/Q^4$.

The product of the BH propagators reads:

$$\mathcal{P}_1 \mathcal{P}_2 = 1 + \frac{p_1}{Q} \cos \varphi + \frac{p_2}{Q^2} \cos 2\varphi.$$

Reducing to a common denominator (× $\mathcal{P}_1\mathcal{P}_2$), one obtains:

$$\begin{aligned} \mathcal{P}_{1}\mathcal{P}_{2}\mathcal{I} + \mathcal{P}_{1}\mathcal{P}_{2}\mathsf{DVCS}^{2} = & \overline{(i_{0}+d_{0})/Q^{2}} + d_{1}p_{1}/2/Q^{4} + p_{2}d_{2}/2/Q^{6} \\ &+ [i_{1}/Q + (p_{1}d_{0}+d_{1})/Q^{3} + (p_{1}d_{2}+p_{2}d_{1})/2/Q^{5}]\cos\varphi \\ &+ [i_{2}/Q^{2} + (p_{2}d_{0}+p_{1}d_{1}/2+d_{2})/Q^{4}]\cos2\varphi \\ &+ [i_{3}/Q + (p_{1}d_{2}+p_{2}d_{1})/2/Q^{5}]\cos3\varphi \\ &+ [p_{2}d_{2}/4/Q^{6}]\cos4\varphi \,. \end{aligned}$$

The $\mathcal I$ and DVCS² terms **mix at leading order in 1/Q** in the φ expansion

Single and random rates

E_b	Q^2 x_B		HMS	PbWO ₄ (MHz)	$PbWO_4(MHz)$	Random coinc.		
(GeV)	(GeV^2)		(kHz)	$E_{th} = 300 \text{ MeV}$	$E_{th} = 1 \text{ GeV}$	$E_{th} = 1 \text{ GeV}$		
6.6	3	0.36	0.73	115	27	0.03		
8.8	3	0.36	4.40	68	11	0.01		
11	3	0.36	13.0	52	7	0.008		
8.8	4	0.36	1.20	145	41	0.05		
11	4	0.36	2.90	100	22	0.02		
8.8	3.4	0.50	3.30	26	2	0.002		
11	3.4	0.50	9.00	20	1.3	0.001		
11	4.8	0.50	1.70	48	6	0.007		
6.6	5.1	0.60	0.053	79	14	0.01		
8.8	5.1	0.60	0.34	39	4.2	0.005		
11	5.1	0.60	1.10	27	2.2	0.002		
11	6	0.60	0.45	43	5	0.006		
6.6	2	0.20	0.26	30	14	0.02		
8.8	2	0.20	1.30	18	6	0.007		
11	2	0.20	47.0	28	8	0.009		
11	3	0.20	0.70	30	14	0.02		
11	5.5	0.36	0.53	222	86	0.1		
11	8.1	0.50	0.072	220	84	0.09		
11	10	0.60	0.017	220	85	0.1		

Table: Single rates in HMS and PbWO₄ calorimeter for each kinematic setting. Random rates in calorimeter are calculated assuming a coincidence window of 50 ns and a solid angle of 25 blocks.

Effect of background in the missing mass resolution

Simulation of the missing mass resolution of PbF_2 with *real* background measured in Hall A experiment E07-007 (red). In order to match the resolution of the data, the simulation needs to be smeared assuming 175 photons/GeV were collected by PMTs (blue).