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Grand Challenge

Map out nucleon’s internal 3-D quark
and gluon structure — “femtography”

Quarks & gluons confined, never observed
directly — “inverse problem”
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with game theory to analyze client activities in 
the RHIC control systems [4]. Prognostics and 
errant beam prevention are becoming 
increasingly important in an age where we 
have many superconducting accelerators 
(superconducting magnets and super-
conducting radio frequency), with high 
repetition rates and high power, and complex 
sensitive components. There is a much greater 
need for improved prognostics to avoid faults 
and to improve on recovery from faults. Many 
groups have efforts focusing on these areas, 
including improving mining large repositories of 
accelerator engineering data and introducing 
methods for real-time anomaly detection in 
operating systems. 
 
An ongoing project at Jefferson Lab leverages 
ML to automate cavity trip classification. 
Traditional methods have been effective at 
identifying superconducting radiofrequency 
(SRF) trip causes, but are labor intensive and 
generate results in an asynchronous fashion. 
Identifying and correcting faults in real-time will 
have numerous benefits including improving 
the stability of the SRF system, providing a 
more reliable and available accelerator, and 
extending the energy reach. It will also provide 
important statistics and insights on cryomodule 
operations to engineering and SRF R&D staff 
while freeing them to focus on the future design 
and fabrication of SRF cryomodules. The 
project established a prototype system that 
reads data from the control system as faults 
occur, classifies it with a trained ML model, and 
outputs the result to subject matter experts. 
The system provides a cavity trip type, 
identifies the cavity causing the instability, and, 
potentially, can predict a trip before it occurs. It 
is a first step towards a diagnostic tool for daily 
use by operators to accurately identify a cause 
of a trip and apply precise response  
measures, avoiding unnecessary gradient 
reduction [10,11]. 

2. Major (Grand) Challenges 

Advances in the use of AI/ML/DL techniques in 
nuclear physics will be driven by the volume 
and complexity of new data—both from 
experimental facilities (as described above) 
and from theory and simulation. The ability to 
discern physical causality and discover new 
phenomena will require the application of  
new technologies to augment human 
understanding. We note several grand 
challenges for better understanding the nature 
of matter in this section. 
 
Generate detailed tomography of the 
proton/nuclei. This 3D tomography of hadrons 
and nuclear structure is not directly accessible 
in experiments. Obtaining the quantities of 
interest, such as generalized and transverse 
momentum dependent parton distribution 
functions (Generalized Parton Distributions 
(GPDs) and Transverse Momentum 
Distributions (TMDs)), involves an inverse 
problem. This is because these objects are 
inferred from experimental data using 
theoretical frameworks such as quantum 
chromodynamics (QCD) factorization theorems 
(e.g., collinear factorization, TMD factorization). 
Such a procedure allows one to connect 
experimental data to quantum probability 
distributions that characterize hadron and 
nuclear structure and the emergence of 
hadrons in terms of quark and gluon degrees 
of freedom. 
 
Existing techniques to extract probability 
distributions from data have primarily been 
used to obtain a 1D tomography of hadrons, 
provided by parton distribution and 
fragmentation functions. These techniques 
usually rely on Bayesian likelihood techniques 
and Monte Carlo sampling methods, which are 
coupled with suitable parametrizations for the 
distribution functions of interest (Figure 5.3).  
 

Develop next generation of QCD analysis
tools to map between observables and
“quantum correlation functions”
(parton distribution functions, fragmentation functions, 
 transverse momentum dependent distributions,
 generalized parton distributions, …)
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AINP working group : Bayesian Inference for Quantum Correlation Functions 
 
 
Wednesday, 4 March, 14:00 - 17:30 
 
14:00 Nobuo Sato (JLab) 

“Quantum correlations functions overview”  
14:15 Alberto Accardi (Hampton U./JLab) 

“Measuring the unobservable: quark and gluon distributions in the proton” 
14:30 Juan Rojo (Nikhef)  

“Artificial intelligence to map the proton structure” 
14:45 Andrea Signori (Pavia U./JLab)  

“Structure of TMD observables” 
15:00 Christian Weiss  (JLab)  

“Generalized parton distributions overview” 
15:15 Break 
 
15:30 Carlota Andres  (JLab)  

“JAM multi-step strategy” 
15:45 Yiyu Zhou (William & Mary)  

“AI for jets in JAM” 
16:00 Patrick Barry  (NCSU) 

“Pion PDFs and challenges in implementing threshold resummation ” 
16:15 Chris Cocuzza (Temple U.)  

“Machine learning for global fits” 
16:30 Alexei Prokudin (PSU Berks)  

“The origin of spin asymmetries”  
17:00 Simonetta Liuti (U. Virginia)  

“ML-based analysis of deeply-virtual exclusive processes” 
17:30 Adjourn 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thursday, 5 March, 14:00 - 17:30 
 
14:00 Nobuo Sato (JLab) 

“Universal Monte Carlo event generator” 
14:15 Tianbo Liu (JLab) 

“GAN from pseudo data to real data: inverse problem for detector effects” 
14:30 Luisa Valesco (U. Dallas) 

“GANs for ETHER” 
14:45 Yaohang Li (ODU) 

“FAT-GAN architecture for simulation of electron-proton scattering events” 
15:00 Yasir Alanazi (ODU) 

“CNN-GAN for physical event generation” 
15:15 Break 
 
15:30 Nobuo Sato (JLab) 

“Next generation of QCD global analysis tools” 
15:45 Manal Alemeen (ODU) 

“Machine learning prototypes to solve the inverse problem” 
16:00 Herambeshwar Pendyala  (ODU) 

“Towards an interactive web based global fitter”  
16:15 Break 
 
16:30 Jake Ethier  (Nikhef) 

“Nuclear PDFs with neural nets” 
16:45 Kostas Orginos (William & Mary/JLab) 

“PDFs from the lattice” 
17:00 Jake Bringewatt (U. Maryland) 

“Confronting lattice parton densities with global analysis” 
17:15 Discussion 
 
17:30 Adjourn 
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Statement of the problem:  from observable cross sections
to QCFs  (inverse problem)
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Nobuo Sato:  overview

Alberto Accardi:  PDFs

10 / 21

Motivations
What do we mean by “factorization”? e.g DIS

F2(x, Q) = x
X

j

e2
j

Z 1

x

d›

›
C2(›, µ) fj

✓
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›
, µ

◆

C2 is calculable in perturbative QCD
fj cannot be solved in closed form

æ inverse problem

2 / 21

Motivations
hadrons as emergent phenomena of QCD

quarks and gluonsnucleon structure hadronization



Statement of the problem:  from observable cross sections
to QCFs  (inverse problem)

Andrea Signori:  TMDs
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GPDs: Summary 9

• GPDs should be regarded as “concept” more than “function”

Synthesize information, relate various structures/measurements

Not necessarily to be measured “point by point”

• Main limitations of GPD studies on physics side

Relevance of asymptotic expressions for observables, power/higher-twist corrections?

Complex structure of GPDs; connection between regions depends on dynamics

Relation to observables through singular integrals

• Small x: Reduced complexity, successful phenomenology

• Large x: GPD extraction essentially model-dependent

Alternative: Amplitude extraction, model-independent, reduced information

• Potential role of AI: Amplitude extraction from DVCS

Other applications?

Statement of the problem:  from observable cross sections
to QCFs  (inverse problem)

Christian Weiss:  GPDs
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State-of-the-art analysis

Carlota Andres:  first simultaneous analysis of 1-D nucleon
structure and hadronization (“JAM19”)

Juan Rojo:  neural net methodology for proton PDFs;
   GANs for PDFs

Jake Ethier:  nuclear PDFs with neural nets

Alexei Prokudin:  first universal analysis of 3-D structure
 (TMDs)

Simonetta Liuti:  neural nets for GPDs

Jake Bringewatt, Kostas Orginos:  synergies with lattice QCD



vital role played by SIDIS + SIA data in constraining strange PDF

�8

could not have seen this without simultaneous MC analysis

State-of-the-art analysis

Carlota Andres:  first simultaneous analysis of 1-D nucleon
structure and hadronization 
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State-of-the-art analysis

Juan Rojo:  

16

GANs for PDF fits

Juan Rojo                                                                                                      Artificial Intelligence for Nuclear Physics workshop

n3pdf group, in preparation

Even with all the n3fit speedups, producing large samples of PDF replicas still time-consuming

Solution: produce new PDF fit replicas using Generative Adversarial Networks

While no additional information is being added, such method can be applied to many cases 
with a very large Nrep is beneficial, such as Bayesian reweighting studies



• Distributions normalized 
by respective proton 
boundary conditions 

• EPPS16 and nCTEQ15 
show 90% CL ranges 
based on Hessian method 

• Significant differences in 
uncertainties
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State-of-the-art analysis

Jake Ethier:  nuclear PDFs with neural nets



State-of-the-art analysis

Alexei Prokudin:  first universal analysis of 3-D structure

UNIVERSAL GLOBAL FIT 2020

19

Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato (2020)

Isovector tensor charge gT = !u-!d
gT = 0.89   0.12 compatible with lattice results 

    !u and !d Q2=4 GeV2

   !u= 0.65     0.22

   !d= -0.24    0.2

Tensor charge  from up and down quarks
 is constrained and compatible with lattice 
 results 
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FIG. 5. The tensor charges �u, �d, and gT . Our (JAM20) re-
sults at Q2 = 4 GeV2 along with others from phenomenology
(black), lattice (purple), and Dyson-Schwinger (cyan).

(SIDIS + SIA) ! GLOBAL (where GLOBAL in partic-
ular includes A⇡

N ), we find gT = 1.4(6) ! 0.87(25) !
0.87(11). This is the most precise phenomenological de-
termination of gT to date.

Remarkably, all of the inferred tensor charges (�u, �d,
and gT ) are in excellent agreement with lattice data.
We stress that the inclusion of A⇡

N is crucial in or-
der to achieve the agreement between our results �u =
0.72(19), �d = �0.15(16) and those from lattice. We
emphasize that future experiments will be essential to
reduce the uncertainty associated with extrapolation be-
yond regions constrained by current measurements.
Conclusions. In this letter we have performed the first
global analysis of the available SSA data in SIDIS, DY,
e+e� annihilation, and proton-proton collisions. The
predictive power exhibited by the combined analysis sug-
gests a common physical origin of SSAs. Namely, they
are due to the intrinsic quantum-mechanical interference
from multi-parton states. The success achieved with a
Gaussian ansatz for the transverse momentum depen-
dence further implies that the effects are dominantly non-
perturbative and intrinsic to hadronic wavefunctions. We
also observe that the extracted up and down quark ten-
sor charges are in excellent agreement with lattice QCD.
Moreover, the future data coming from Jefferson Lab
12 GeV, COMPASS, an upgraded RHIC, Belle II, and
the Electron-Ion Collider will help to reduce the uncer-
tainties of the extracted functions and ultimately lead to
a better understanding of hadronic structure.
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State-of-the-art analysis

Simonetta Liuti:  neural nets for GPDs

many multi-
dimensional
functions



State-of-the-art analysis

Understanding lattice data: varying ത𝑢, ҧ𝑑

3/5/2020 AINP 16

ത𝑢 → 𝛼ത𝑢
ҧ𝑑 → ҧ𝑑/𝛼

greater sensitivity to flavor asymmetry of the sea
for unpolarized than polarized PDFs

Jake Bringewatt:  combined analysis of experiment
 & lattice data
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Advantages/Potential Issues of ML

• The resulting function from the 
neural network is very small; less 
than 1 MB. Thus, for 1,000 runs, 
the amount of memory required is 
less than 1 GB.  So we went from 
1,360 GB to 1 GB using neural 
networks!!

• If we want to make a new plot or 
include new data into our fit, we 
do not need to generate new tables 
(which take up time and memory)

Issues
• Training the models is quick, but 

nontrivial.  We still need to figure 
out how to do it well.

AdvantagesSuccess in 
Machine 
Learning

� In an example of the full NLO calculation, we can test the neural 
net’s prediction to the Mellin tables and an *-space calculation for 
all data points

Remarkable agreement!

More fine tuning to come…

! = 0

! = 7

AI for code optimization

Yiyu Zhou:  ML for jets

Patrick Barry:  ML for Drell-Yan

d�

dxF d
p
⌧

xF

Chris Cocuzza: 
ML for nuclear DIS
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AI Monte Carlo event generator

6 / 13

Nature
Events:

vertex level

Experimental
detector

Events:
detector level

distortion

AI

Events:
vertex level

Detector
simulator

neural net
detector

Events:
detector level

distortion

Likelihood

data
com

pression

Nobuo Sato:  Universal Monte Carlo Event Generator (UMCEG)
or Empirically Trained Hadronic Event Regenerator (ETHER)



Acceptance and Efficiency

7

Example: (SIDIS) 
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Black: events at vertex 
Red: apply CLAS12 acceptance 
Blue: apply SoLID acceptance
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AI Monte Carlo event generator

Tianbo Liu:  complexity of detector effects
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AI Monte Carlo event generator

Luisa Velasco:  GANs for ETHER

▪ Training set: 
100,000 
events

▪ Training steps:

▪ Bootstrapping 
procedure 
used to obtain 
error bands 
on generator

FAT-GAN

Yaohang Li:  Feature-Augmented & Transformed (FAT) GANs
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AI Monte Carlo event generator

Yasir Alanazi:  CNN GANs

➢ Electron
PYTHIA
CNN-GAN



Manal Alemaeen: ML for inverse mapping prototypes

9 / 12

Application to
unpolarized DIS
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AI for femtographic inverse mapping

Nobuo Sato:  next generation of global QCD analysis tools



Demo

AI for femtographic inverse mapping

Herambeshwar Pendyala:  interactive web-based
           global analysis tools
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AI has the potential to significantly boost the science of
nuclear femtography

AI applications already identified:
— code optimization (mapping Mellin tables)
— inverse mappers
— theory-independent MC event generators

Need for ML scientists to help nuclear physicists to more
efficiently implement relevant  AI applications
— consultants to assist QCD scientists for code optimization
— collaborators to develop new strategies / prototypes for

 nuclear femtography

�21

What has been learned so far?



Strengthen collaboration between nuclear physicists and 
AI scientists
— new initiatives (e.g. CNF)

— regular NP-AI workshops

Specific needs for QCD global analysis
— improved code optimization (e.g. fully connected NNs       CNNs)

— inverse mappers (e.g. from discretized      continuous kinematics,
   remove binning dependence)

— web-based global analysis platform

— GAN strategy for inverse problem with detector effects 
 at the event level

Specific needs for MC event generators
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What are next steps?
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