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FIG. 2. (color online) Fitting of the distribution drawn from
a sample of configurations in a Markov chain. The green dots
represent configurations in the sample, for which the x axis
shows the feature of the nearest-neighbor spin-spin correlation
C1, and the y axis shows the energy (per site) E/N computed
from the original model in Eq. 1.

a simulation at temperature T > Tc, and then generate
another sample at Tc, using the self-learning update with
He↵ learned from the first iteration. Later, a more accu-
rateHe↵ can be learned from the second-iteration sample.
In actual simulations, one can further improve this pro-
cess by using more iterations, each done with a smaller
sample. More details can be found in the Supplemental
Material.

Through this iterative training process, we success-
fully arrive at the final He↵. As shown in Fig. 2, He↵

(Self-Learning Fit) indeed fits the energy of the configu-
rations that are statistically significant in the simulation.
In the main part of the figure, the data points are con-
centrated in the vicinity of the fitted line, indicating that
trainedHe↵ is indeed a good description of the low-energy
physics.

Following the procedure of SLMC, once training pro-
cess is finished, cluster update with the Wol↵ algorithm
according to He↵ can be constructed. Then, the gener-
ated cluster update is accepted or rejected with a prob-
ability accounting for the energy di↵erence between the
e↵ective model and the original model. The probability
of accepting a cluster is as follows,

↵(A ! B) = min{1, e��[(EB�Eeff
B )�(EA�Eeff

A )]}, (3)

where A and B denote the configurations before and after
flipping the cluster. EA and E

e↵
A denote the energies of

a configuration A, for the original model in Eq. 1 and
the e↵ective model in Eq. 2, respectively. Derivation of
Eq. 3 can be found in the SM16. With Eq. 3, the detailed
balance is satisfied, and the SLMC is exact, despite the
use of an approximate e↵ective model in constructing the
cluster.

FIG. 3. (color online) The decay of autocorrelation functions
as a function of MC steps, obtained using di↵erent update
algorithms. Inset, semi-log plot of the same data.

To test the e�ciency of the update scheme in SLMC,
we measure the autocorrelation time ⌧ , which signifies
how correlated the MC configurations are in the Markov
chain (detailed relation of ⌧ with the computational com-
plexity of MC algorithm can be found in SM16). In
Fig. 3, we plot ⌧ of the ferromagnetic order parameter
M = 1

N |
P

i Si|, where N is the number of sites, mea-
sured at each step of Markov chain, generated by di↵er-
ent update algorithms on a square lattice of linear size
L = 40. The simulation is done at Tc, which is deter-
mined by the Binder ratio as shown in SM16.

We compare results of the local update, the self-
learning update using He↵ and also a naive Wol↵-like
cluster update with the bare two-body J term from the
original model in Eq. 1 is used to construct a cluster. The
autocorrelation functions generated by all updates decay
with the MC steps �t, and autocorrelation time ⌧ can
be obtained from fitting in the form of e��t/⌧ . Our re-
sults show that comparing to the local and naive cluster
updates, the self-learning update has the much shorter
⌧ . In particular, at this system size, the self-learning
update is about 24-times faster than the local update,
while the naive Wol↵-like cluster update does not gain
much speed-up.

While Fig. 3 is an example of the better performance
of SLMC for a fixed system size at Tc, we have further
collected the autocorrelation time ⌧ at Tc for local and
self-learning updates with many di↵erent system sizes,
and hence extract the scaling behavior of ⌧ with respect
to L. The results are shown in Fig. 4. The blue squares
are the ⌧L, i.e., autocorrelation time for local update,
and it follows ⌧L ⇠ L

2.2, well consistent with literature
on critical slowing down8,9. The green dots are the ⌧S ,
i.e., autocorrelation time for self-learning update. For all
the tested systems size L  80, the ⌧S delivers a large
speedup about 20 times (see inset of Fig. 4 for clarity).
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FIG. 4. (color online) The scaling behavior of autocorrelation
times of local update ⌧L, SLMC update ⌧S , and the restricted
SLMC update ⌧R. Inset is a zooming for L < 80.

For very large system size, we find ⌧S increases ex-
ponentially with L, ⌧S / e

L/L0 (more details in SM16).
This is because of a finite energy di↵erence between the
e↵ective model in Eq. 2 and the original model in Eq. 1.
Therefore, the acceptance ratio of flipping the whole clus-
ter in Eq. 3 decreases exponentially as the length of clus-
ter boundary grows with increasing L, which renders the
exponential increase of the autocorrelation time. But
this drawback in SLMC can be easily remedied by sim-
ply restricting the maximum size of the cluster in Wol↵
algorithm24. With this improvement, the averaged ac-
ceptance ratio can be expected to be fixed and SLMC
should have the same scaling function for autocorrela-
tion time as local update, ⌧R = ⌧0L

z. However, by tun-
ing the maximum size of cluster, we can achieve a much
smaller prefactor ⌧0, and the optimized maximum clus-
ter size can be automatically self-learned via a model-
independent procedure (more details in SM16). This is
indeed the case. As shown by the red dots in Fig. 4, when
the growth of the cluster is restricted to an area within
40 lattice spacing, the autocorrelation time ⌧R becomes
⌧R / L

2.1, which obeys the same power law as ⌧L, but

with a prefactor about 10 times smaller (More details
about the design of this restricted SLMC is provided in
SM16). Therefore, although SLMC still su↵ers from the
critical slowing down in the thermodynamic limit, we can
gain a 10-fold speedup. That means SLMC can achieve
much larger system size than local update, which helps to
overcome the finite size e↵ect. Moreover, for medium-size
systems, the SLMC without restriction can easily gain a
20-fold speedup, as shown by ⌧S .
Discussion: We now discuss the applicability of SLMC

method to a broader class of problems in statistical and
condensed matter systems. Besides spin systems, many
models of great interest may be transformed into spin
models with short-range interactions5,25, for which ef-
ficient global update methods are available. In such
cases, SLMC can be readily implemented similar to our
model studied above. In particular, we expect SLMC to
be very useful for studying strongly correlated fermion
systems26,27, where no e�cient global update method
is currently known. Moreover, by employing rapidly-
developing machine learning techniques, SLMC method
may be able to learn configuration update on its own,
without relying on a given e↵ective Hamiltonian. If real-
ized, this will further increase the e�ciency and versatil-
ity of SLMC.
SLMC may also bridge numerical and theoretical stud-

ies. The e↵ective Hamiltonian trained or learned from
the MC simulation may guide the theoretical study of
the original model. The benefit is mutual: theoretical
understanding may improve the accuracy of the e↵ective
model and thus the performance of numerical simulation.
Note added: Recently we noted a related work28.
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FIG. 1. (color online) Schematic illustration of learning pro-
cess (top panel) and simulating process (bottom panel) in
self-learning Monte Carlo.

namical exponent z in MC simulation.
Guided by these requirements, we now propose the de-

tailed procedure of SLMC method. As shown in Fig. 1,
SLMC consists of four steps: (i) perform a trial MC sim-
ulation using local update to generate a large number of
configurations, which serve as training data; (ii) learn an
e↵ective Hamiltonian He↵ from this training data; (iii)
propose moves according to He↵ in the actual MC sim-
ulation; (iv) determine whether the proposed moves will
be accepted or rejected based on the detailed balance
principle of the original Hamiltonian H. Steps (i) and
(ii) constitute the learning process, whereas steps (iii)
and (iv) are repeated in the actual MC simulation to
calculate physical observables.

We further outline how to implement step (ii) and (iii)
in actual simulations for a model to be presented below.
We use machine learning15 in step (ii) to train an e↵ective
Hamiltonian, which can be e�ciently simulated using a
global update method even though the original Hamilto-
nian cannot. Then step (iii) can be easily implemented
using this global update.

Model and results: To demonstrate the power of
SLMC, we study a classical model on a 2D square lattice

H = �J

X

hiji

SiSj �K

X

ijkl2

SiSjSkSl, (1)

where Si = ±1 is the Ising spin on site i. J is the near-
est neighbor (NN) interaction and K is the interaction
among the four spins in the same plaquette. We set fer-
romagnetic interactions, i.e., J > 0 and K > 0. For any
finite J and K, there is a phase transition from paramag-
netic phase at high temperature to ferromagnetic phase
at low temperature, which belongs to the 2D Ising uni-
versality class. For K = 0, this model reduces to the
standard Ising model which can be simulated e�ciently
by the Wol↵ method. However, for K 6= 0, no simple and
e�cient global update method is known. Below we will
show that SLMC method significantly reduces the auto-
correlation time near the critical point, using K/J = 0.2

TABLE I. The trained parameters {J̃n} of the e↵ective model
in Eq. 2, without and with setting J̃n = 0 (n � 2).

J̃1 J̃2 J̃3 Mean error
Train 1 1.2444 -0.0873 -0.0120 0.0009
Train 2 1.1064 - - 0.0011

as an example. More results can be found in the Supple-
mental Material (SM)16.
As outlined before, the initial step of the SLMC is to

train an e↵ective Hamiltonian, He↵, from a sample of
configurations generated by local update based on the
original Hamiltonian in Eq. 1. We choose He↵ to be a
generalized Ising Hamiltonian with two-body spin inter-
actions over various ranges,

He↵ = E0 � J̃1

X

hiji1

SiSj � J̃2

X

hiji2

SiSj � . . . , (2)

where hijin denotes the n-th NN interaction and J̃n is
the corresponding interaction parameter.
We now train He↵ from the training sample by opti-

mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
more e�ciently train He↵ through a simple and reliable
linear regression. For the a-th configuration in the sam-
ple, we compute its energy E

a [from Eq. 1] and all the
n-th NN spin-spin correlations Ca

n =
P

hijin SiSj , which

serve as the actual training data. Then, E0 and {J̃n}
can be easily trained from a multi-linear regression of
E

a and {Ca
n}, Ea =

P
n J̃nC

a
n + E0. The results are as

shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
He↵ could be self-improved by a reinforced learning pro-
cess. Usually, a good initial sample could be very hard to
generate using only local update, especially for systems
at the critical temperature Tc or with strong fluctuation.
In this case, we first train an e↵ective model He↵ using
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FIG. 1. (color online) Schematic illustration of learning pro-
cess (top panel) and simulating process (bottom panel) in
self-learning Monte Carlo.
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Testcase

This is an exact algorithm.

P(Sk′�|Sk) = min (1, e− β(H[Sk′�]− Hθ
eff[Sk′�])

e− β(H[Sk]− Hθ
eff[Sk]) ) Qθ

eff(Sk′ �|Sk)

SLMC for spin systems

Update using 
effective model 
this must satisfy detailed balance

θ : tunable parameter = coupling
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Mock data (vector ch.) from PRD65, 014501(CP-PACS), noise level from Asakawa et al.

ρ(mock data) G G+noise ρ(reconstruct) integration +Gaussian noise Sparse modeling

|ρrec(ω) − ρmock(ω) |2 = 0.1071

P!F!DHm"#$
eQ"( f )

ZLZS%"&
, Q"%f&!"S%f&"L . %13&

Therefore the condition satisfied by the most probable spec-
tral function f " for a given " !and model m(')#is given by

(Q"%f&
( f "

f! f"

!0. %14&

The parameter " dictates the relative weight of the en-
tropy S( f ) and L. One can deal with " dependence of f " as
follows. One first defines P!"!DHm# !3,13,14#, the prob-
ability of " for given data and all prior knowledge, which
can be transformed as

P!"!DHm#$P!"!Hm## DF
eQ"( f )

ZLZS%"&
. %15&

See Appendix E for details. In the final result f̂ ('), " is
averaged with this weight factor P!"!DHm#,

f̂%'&!# d"P!"!DHm#f "%'&$ # d" P!"!DHm#.
%16&

This procedure is called Bryan’s method !17#and is used
in this article. We restrict the range of " in the actual average
as "min)")"max , where "min and "max are chosen to sat-
isfy P!"̂!DHm#*10 P!"min ,max!DHm# with "̂ being the
maximum value of P!"!DHm#. The standard choice of
P!"!Hm#in Eq. %15&is either a constant or 1/" !3,14,17#. In
the next section we will show that the final result is insensi-
tive to the choice as long as P!"!DHm# is sharply peaked
around "̂ , and therefore we adopt P!"!Hm#!const in our
main analysis.
In the MEM it is not possible to assign error bars to each

point in the spectral function since the errors between differ-
ent points are strongly correlated. Instead we estimate the
uncertainty of the spectral function averaged over ' in a
certain region by the method explained in Appendix F. The
magnitude of this uncertainty gives an estimate for the good-
ness of the given model m(') !3,6#.

B. Test

Several tests of the MEM have already been carried out in
Ref. !6#, where the dependence of the results on the number
of time slices ND , the size of errors of the data, and the
model m(') have been examined using mock-up data cre-
ated from test spectral functions. The following conclusions
were drawn from the tests.

%1&Decreasing the error of data D(+) is more important
than increasing ND for obtaining better estimates of f (')
that reproduce the original spectral function more closely.

%2&It is better to include information about f ('), such as
the asymptotic value, if it is known, into the model m(').

%3&If the obtained f (') depends strongly on the model, a
better model in the sense of leading to an f (') that is closer

to the original spectral function gives smaller errors for the
averaged f (').
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The Goal

The main idea of this work is to try to accelerate the computation of the
linear system for the quark propagator. We use numerical data for different
stopping parameters ✏ to as training and prediction data sets.

For example, using a precise measurement of the propagator (✏ = Ry�3) on
a subset of the ensemble and a less precise (sloppy) one
(✏ = Ry�R, Ry�k, Ry�j) on the whole ensemble.

Compute a precise correlator and 
a sloppy correlator on a fraction 
of the ensemble for training  and 
bias correction

Use only the information of
 the sloppy correlator to 
estimate the precise one

Total ensemble size

Bias correction set

Training Set

Expensive inversions

Cheap inversions

To properly estimate the uncertainty bias-correction and boostrap are used. 10
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Using more information at once, nearest neighbors
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Using more information at once

As a second step, one could try to use more information at the same
time. In particular we construct a function to approximate the
precise data:

*S(i) ⇡ �JG (* ✏R(i),* ✏k(i), ...,* ✏M (i))

where * ✏B (i) is the correlator at precision ✏ = Ry�B .

Input Layer

First 

Hidden Layer

Output Layer

Second

Hidden Layer
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Contour deformation
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• Generalized Cauchy’s theorem

• Deformation in the field variable space (lattice geometry unchanged)
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Learnifold
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• Generate few configs on the 
generalized thimble manifold

• Use neural nets with appropriate 
symmetries to interpolate

• Integrate over the learnifold, the 
manifold defined by the trained 
neural net 
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Results
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FIG. 4. Èe≠iSI +i Im log det J Í and ÈnÍ/mf as a function of µ/mf for Wilson fermions on lattices of size (top) 10 ◊ 10, (center)
20 ◊ 10, (bottom) 40 ◊ 10 with amf = 0.30(1). The dashed curve represents the free fermion gas with the same mass. The
darker points in the 20 ◊ 10 graphs (middle row) correspond to a learnifold trained on MT with Tflow = 0.4 whereas the lighter
use Tflow = 0.2.
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First application: scalar lattice field theory

Success:  Critical slowing down is eliminated
Cost:      Up-front training of the model 9
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FIG. 7: Scaling of integrated autocorrelation time with respect to lattice size for HMC, local Metropolis, and flow-based MCMC.
In (c) the upper sets of points in blue correspond to models trained to a mean acceptance rate of 50%, while the lower sets
of points in green correspond to models trained to a mean acceptance rate of 70%. Dashed red lines display power law fits to
L = {10, 12, 14} with labels Lz specifying the scaling. The HMC and local Metropolis methods demonstrate power-law growth
of ⌧int, while ⌧int for the flow-based MCMC is consistent with a constant in L and decreases as mean acceptance rate increases.
Dot-dashed blue and green lines for the flow-based ensembles display lower bounds in terms of mean acceptance rate based on
Eq. (18). Error bars indicate 68% confidence intervals estimated by bootstrap resampling and error propagation.

is a strong correlation between the mean acceptance rate
and integrated autocorrelation time for models trained
using a shifted KL loss. This is further confirmed by the
similarity of the rejection run histograms across lattice
sizes for flow-based MCMC, as shown in Figure 2.

D. Training costs

While CSD in the sampling step for the flow-based
MCMC is eliminated, training the generative model in-
troduces an additional up-front cost, as discussed in Sec-
tion IID. Since this cost is amortized over the ensem-
ble, this approach will naturally be computationally ad-
vantageous in the limit of generating a large number of
samples. For a finite target ensemble size, the poten-
tial acceleration o↵ered depends crucially on the training
time.

In this work, all models were trained using one to two
GPU-weeks, with the larger lattices incurring the most
computational cost. For the simple fully-connected archi-
tecture used in this work, the scaling of both the sampling
and training time is controlled by dense matrix-vector
multiplications which require O(V 2) floating point op-
erations each. The number of epochs used to train the
largest lattice was also roughly 10⇥ that of the smallest
lattice. This asymptotic scaling is a result of the simple
model architecture used in this proof-of-principle study.
For related methods applied to image generation, using
convolutional neural networks and a multi-scale archi-
tecture reduced training and sampling costs significantly
and improved scaling to O(V ) [39]. There are physical
grounds to expect these tools to apply equally well to

the present application. Convolutional networks use only
local information to update values in each layer, exploit-
ing locality in the system, and use identical weights for
each point on the lattice, manifestly preserving trans-
lational invariance. A multi-scale architecture learns
coarse-grained distributions and fine-graining procedures
in separate layers; this is an e↵ective division of tasks
for renormalizable quantum field theories, where simple
coarse-grained descriptions are expected to arise. Gen-
erative models, and in particular flow-based models, are
also rapidly evolving towards more e�cient representa-
tion capacity. Complex coupling layers have been imple-
mented [39, 52], as have generalized convolutions [53, 54]
and transformations with continuous dynamics that are
not dependent on restricted coupling layers [55]. These
developments allow models to better capture a distribu-
tion within a given number of training steps.

For complex applications, it is also critical that larger
models with many coupling layers can be trained with-
out exceeding memory bounds. The algorithm proposed
here can be trained with constant memory cost as the
number of layers is increased [56], alleviating the stor-
age limitations that can arise in gradient-based optimiza-
tion. Memory costs can be further reduced by distribut-
ing samples within each training batch across many ma-
chines.

Finally, typical applications seek to produce ensembles
at many di↵erent choices of parameters, and often require
parameter tuning. Training costs can therefore by amor-
tized further; models trained with respect to an action
at a given set of parameter values can either be used to
initialize training or as a prior distribution for models
targeting that action at nearby parameter values.

Dynamical critical exponents 
consistent with zero 

Application: scalar field theory

Shanahan: Ensemble generation



Quantitative correlations 
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Discussions
• Well-defined avenues for progress have been identified


• Ensemble generation (with and without a sign problem)


• Inverse problem


• Increase AI literacy in the LQCD community


• Organize workshops that focus on the science, summer schools to educate students


• Establish connection between Physics and AI/ML communities


• Funding for small scale initiatives at Labs and Universities


• Support for graduate students, postdocs, bridge facutly positions, lab scientists dedicated 
to AI/ML applications to LQCD


• Establish relations with ongoing efforts to bring AI to Exascale computing systems (ex. 
CANDLE project)


