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Aplications of ML/AI for
QFTs

* Ensemble generation:
* Methods already developed by the ML community exist
* Need adaptation to accommodate physics needs
e Scalability, Compact variables (SU(3) gauge groups)
e Al method for tackling the sign problem
* Encouraging results presented
* Inverse problem:
e Spectral function reconstruction
e PDF/GPDs from lattice QCD
* Phase tranistion identification

* Improved estimators for correlation functions



Presenters

Akio Tomiya (RIKEN/BNL)
* Application of ML to computational physics
Giovanni Pederiva (MSU)
* Speeding up Hadron Correlator computations with ML
Kimmy Cushman (Yale)
e Replacing MCMC with Generative flows
Andrei Alexandru (GWU)
e ML for QFTs with a sign problem
Phiala Shanahan (MIT)

ML for LQCD: ensemble generation



Exact algorithm is needed

Self-learning Monte Carlo (SLMC)

" J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137)
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(very) Preliminary results Akio Tomiya

Mock data + noise: it is well reconstructed ...?
Mock data (vector ch.) from PRD65, 014501(CP-PACS), noise level from Asakawa et al. )
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Giovani Pederiva

The Goal

The main idea of this work is to try to accelerate the computation of the
linear system for the quark propagator. We use numerical data for different
stopping parameters ¢ to as training and prediction data sets.

For example, using a precise measurement of the propagator (e = 10~%) on
a subset of the ensemble and a less precise (sloppy) one
(e =10"",1072%,10">) on the whole ensemble.

Compute a precise correlator and
a sloppy correlator on a fraction
of the ensemble for training and
bias correction
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Cheap inversions i .
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To properly estimate the uncertainty bias-correction and boostrap are used.



Giovani Pederiva

Using more information at once, nearest neighbors

Proton Effective Mass for Ensemble Mj using Np, /N = 0.15,
Precisions € = 107! and € = 1072 and 2 Nearest Neighbor Radius

3.0
{  Exact
¢t Linear Single !
¢ Linear Multi
2.5 {f NN
— 2.0 i "

Meff [Ge\/'

1.5 E
Using more information at once

As a second step, one could try to use more information at the same E‘ i % @ g % %

time. In particular we construct a function to approximate the
precise data:

1.0
Ct(t) m TME(C1 (1), C2(t), ..., C°(t))
where C¢(t) is the correlator at precision ¢ = 10"
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Andrei Alexandru: Sign Problem

Contour deformation

A e / dz e @)
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e Generalized Cauchy’s theorem
e Deformation in the field variable space (lattice geometry unchanged)



Andrei Alexandru: Sign Problem

[.earnifold

e Generate few configs on the
generalized thimble manifold

e Use neural nets with appropriate
symmetries to interpolate

e Integrate over the learnifold, the
manifold defined by the trained

neural net

I8



Andrei Alexandru: Sign Problem

Results
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Shanahan: Ensemble generation

Machine learning QCD

Generative models for QCD gauge field generation

I H B Massachusetts
I I Institute of
Technology




Application: scalar field theory

First application: scalar lattice field theory
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Success: Critical slowing down Is eliminated

(a) HMC ensembles
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Shanahan: Ensemble generation
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(b) Local Metropolis ensembles
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(c) Flow-based MCMC ensembles

Up-front training of the model
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Dynamical critical exponents

consistent with zero
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unweighted mean = 0.310, dx = 1
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Discussions

Well-defined avenues for progress have been identified
* Ensemble generation (with and without a sign problem)
* Inverse problem
Increase Al literacy in the LQCD community
* Organize workshops that focus on the science, summer schools to educate students
Establish connection between Physics and Al/ML communities
Funding for small scale initiatives at Labs and Universities

Support for graduate students, postdocs, bridge facutly positions, lab scientists dedicated
to Al/ML applications to LQCD

Establish relations with ongoing efforts to bring Al to Exascale computing systems (ex.
CANDLE project)



