A.I. for Nuclear Physics

Accelerator Science and Operations
Recap of the week’s sessions

• ~40-50 participants!

• Wednesday
 • Accelerator science that uses and can benefit from AI support

• Thursday
 • Accelerator operations that can be improved from AI methodologies
Applications - Accelerator Science

• **Optics and lattice design**
 • "Experiments on Improving Cooling Results in the LEReC system using Machine Learning Techniques”, Y. Gao **Bayes Reinforcement Learning (RL)**
 • ML techniques applied to 6D phase space evolution and equilibria (higher dimensional frequency maps, beam-beam effects in EIC). Identify working points. **Unsupervised learning**

• **Beam instrumentation design and optimization**
 • “EM structure optimization”, B. Mustapha **Surrogate Models**
 • Interpolation of high dimensional beam phase space data – virtual diagnostics

• **Reinforcement Learning for Controls**
Applications - Accelerator Operations

- **Optics and lattice optimization**
 - “Bayes analysis of beamline optimization” Y. Hao **Bayesian GP**
 - "Online Optimization Strategies at the Argonne Wakefield Accelerator", Ryan Roussel **GP Surrogate+NN RL**
 - “Autonomous On-line Beam Optimization”, Matt Amthor **Particle swarm**

- **Target, charge stripper, collimation systems**
 - ML/HPC to investigate high power target damage, material properties

- **Anomaly detection and mitigation**
 - LLRF trip events, beam loss monitoring **Random Forest DL PCA**

- **Other operational aspects**
 - Cryoplant operations, component maintenance prediction
Synergies with many accelerator labs

• NP
 • RHIC, EIC
 • 88” cyclotron, VENUS source
 • ATLAS, TAMU

• HEP/BES and Others
 • SNS, ESS, GSI
 • LCLS, Argonne Wakefield Accelerator
 • Swiss FEL, EU-XFEL
 • FNAL
Data Science Uses and Needs

• Gaussian processes, optimization
• Supervised, unsupervised learning
• Reinforcement learning, design of agents
• Centralized and distributed computing
 • Network, hardware, and software architecture for data
• Example workflow:
Challenges and Opportunities

• **Optimized design of linacs, synchrotrons, transport lines**
 • Development and validation of virtual diagnostics (eg. long. phase space)
 • Design and simulation of novel accelerators; advanced engineered materials
 • Optimized diagnostic deployment

• **Improving facility performance and user experience**
 • Data-driven beam generation, transport, delivery optimization
 • Automated learning for operator support
 • Hardware acceleration of ML in distributed control systems
 • Anomaly detection and mitigation (eg. LLRF, beam diagnostics)
 • System health monitoring (eg. targets, cryoplant); data driven system maintenance

• **Create/deploy data standards for integration to ML workflows (big, small)**
 • Aggregated and distributed computing resources

• **Benchmark techniques on standard models; dedicated accelerator studies**
 • Dedicated studies on machines and diagnostic support?
 • AI Cookbook of techniques, Data Science training (for humans)
Thank you to all of the session speakers and participants and to Jlab and DOE/NP for organizing the workshop.