

Accelerator Science and Operations

Recap of the week's sessions

~40-50 participants!

- Wednesday
 - Accelerator science that uses and can benefit from AI support
- Thursday
 - Accelerator operations that can be improved from AI methodologies

Applications - Accelerator Science

- Optics and lattice design
 - "Experiments on Improving Cooling Results in the LEReC system using Machine Learning Techniques", Y. Gao Bayes Reinforcement Learning (RL)
 - ML techniques applied to 6D phase space evolution and equilibria (higher dimensional frequency maps, beam-beam effects in EIC). Identify working points. Unsupervised learning
- Beam instrumentation design and optimization
 - "EM structure optimization", B. Mustapha Surrogate Models
 - Interpolation of high dimensional beam phase space data virtual diagnostics
- Reinforcement Learning for Controls

Applications - Accelerator Operations

- Optics and lattice optimization
 - "Bayes analysis of beamline optimization" Y. Hao Bayesian GP
 - "Online Optimization Strategies at the Argonne Wakefield Accelerator", Ryan Roussel GP Surrogate+NN RL
 - "Autonomous On-line Beam Optimization", Matt Amthor Particle swarm
- Target, charge stripper, collimation systems
 - ML/HPC to investigate high power target damage, material properties
- Anomaly detection and mitigation
 - LLRF trip events, beam loss monitoring Random Forest DL PCA
- Other operational aspects
 - Cryoplant operations, component maintenance prediction

Synergies with many accelerator labs

- NP
 - RHIC, EIC
 - 88" cyclotron, VENUS source
 - ATLAS, TAMU

• HEP/BES and Others

- SNS, ESS, GSI
- LCLS, Argonne Wakefield Accelerator
- Swiss FEL, EU-XFEL
- FNAL

Data Science Uses and Needs

- Gaussian processes, optimization
- Supervised, unsupervised learning
- Reinforcement learning, design of agents
- Centralized and distributed computing
 - Network, hardware, and software architecture for data
- Example workflow:

Anomaly Detection	Anomaly Classification Clustering	Online Anomaly System	Automated Control	
Supervised ML	Supervised and Unsupervised ML	ML at the Edge	Reinforcement Learning for Controls	

Challenges and Opportunities

Optimized design of linacs, synchrotrons, transport lines

- Development and validation of virtual diagnostics (eg. long. phase space)
- Design and simulation of novel accelerators; advanced engineered materials
- Optimized diagnostic deployment

• Improving facility performance and user experience

- Data-driven beam generation, transport, delivery optimization
 - Automated learning for operator support
 - Hardware acceleration of ML in distributed control systems
- Anomaly detection and mitigation (eg. LLRF, beam diagnostics)
- System health monitoring (eg. targets, cryoplant); data driven system maintenance
- Create/deploy data standards for integration to ML workflows (big, small)
 - Aggregated and distributed computing resources
- Benchmark techniques on standard models; dedicated accelerator studies
 - Dedicated studies on machines and diagnostic support?
 - Al Cookbook of techniques, Data Science training (for humans)

Thank you to all of the session speakers and participants and to Jlab and DOE/NP for organizing the workshop