

Experimental Methods

Co-conveners: Mario Cromaz and Michelle Kuchera

Overview

31 attendees15 lightning talks15 unique institutions

Format:

- Lightning talks: 3-4 slides with Q&A
- Discussions: 4-5 groups
 - Tangible results (near-term goals): Wednesday
 - Big Goals (infinite \$\$, resources, time, dream Big): Thursday
 - Emergent themes collective opinion

Holistic approach to experimentation

Standardized data formats

Experiment design not limited by computation

Holistic approach to experimentation:

- Integrate disparate data sources: accelerator, experiment controls, detector data
- Realtime analysis and feedback for quick diagnostics and optimization
- Unique challenge in NP accelerator-based, quick-turnaround experiments
- Global optimization of experiment design

Standardized data formats:

- Common formats for NP AI
 - allows resource sharing across subfields
 - streamlines workflow for collaboration and AI innovation
- Publicly available datasets for AI development and benchmarking
- Reanalysis of experiments for new observables with new tooling

Experiment design not limited by computation:

- High luminosity, statistics to observe rare processes
- Ability to extract all necessary information (not necessarily high data rates!)
 - Make fast, good decisions with confidence
- Implementation: data compactification, triggers (FPGA, software), fast online analysis, etc.

Educate and build a broader community

Improving analysis

Uncertainty quantification

Educate and build a broader community:

- NP-supported and maintained educational resources and tutorials
 - Central portal for NP community
- Training of NP scientists
 - Identifying AI opportunities
 - Using AI models
 - Training models
 - Developing architectures
- Build an infrastructure for AI / ML scientists in the NP community
 - lab positions
 - University collaborations or joint positions

Improving analysis:

- Improved sensitivity, tracking
- Faster analysis \rightarrow faster scientific output

Improving analysis:

- Improved sensitivity, tracking
- Faster analysis \rightarrow faster scientific output

Model Type	<i>A1</i> Metric	Ac Metric	Ah Metric	<i>Af</i> Metric	Training Accuracy	Time to Train	Time to Predict / sample
MLP	96.5%	20.2%	92.1%	3.4%	94.7%	252 sec	4 μs
ERT	93.3%	19.9%	91.9%	6.6%	99.9%	1.7 sec	5 µs
CNN	96.4%	30.1%	89.4%	3.5%	93.4%	457 sec	1.2 ms

JLab CLAS 12: Gagik Gavalian

William Phelps and Andru Quiroga

FRIB AT-TPC: Daniel Bazin

Improving analysis:

- Improved sensitivity, tracking
- Faster analysis \rightarrow faster scientific output

NSCL: Fanurs C.E. Teh

GlueX: Daniel Lersch

Improving analysis:

- Improved sensitivity, tracking
- Faster analysis \rightarrow faster scientific output

propagation for 3 modules (bottom) for real data sample

JLab: Yulia Furletova

Virginia Tech: Mai Dahshan and Nicholas Polys

Notre Dame: Yulia Furletova

Improving analysis:

- Improved sensitivity, tracking
- Faster analysis \rightarrow faster scientific output

JLab: Thomas Britton

LBL: Yue Shi Lai

LBL: Ren Cooper

Uncertainty quantification:

- Al methods with well-defined systematic and statistic uncertainties
- Establish metrics for evaluation and comparison of algorithms

THANK YOU!

ALL of the contributors and participants in the Experimental Methods working group!

