

Event Generation and Simulation

Simulations in Experiment and Theory

The role of A.I. in simulations

Lesson learned High-precision QCD measurements require high-precision simulations

Statistical accuracy for precise hypothesis testing

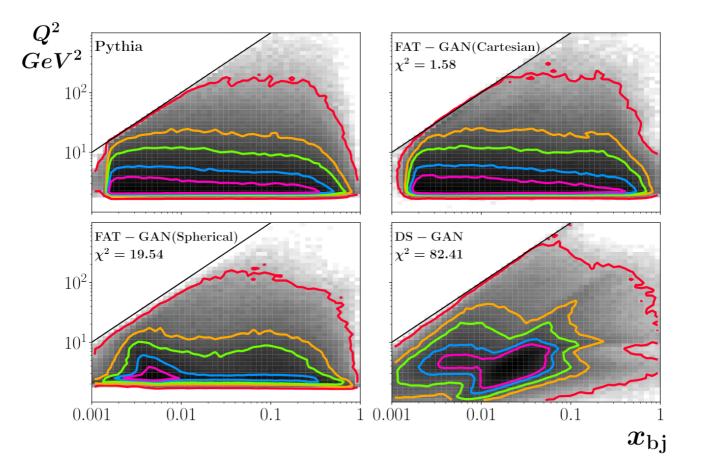
- up to trillion of simulated events required (HL-LHC)
- often computationally intensive, in particular calorimeter simulations

Common alternatives

- fast simulations with computationally efficient approximations, e.g., parameterizations or look-up tables
- **still** insufficient accuracy for high-precision measurements

Promising alternatives

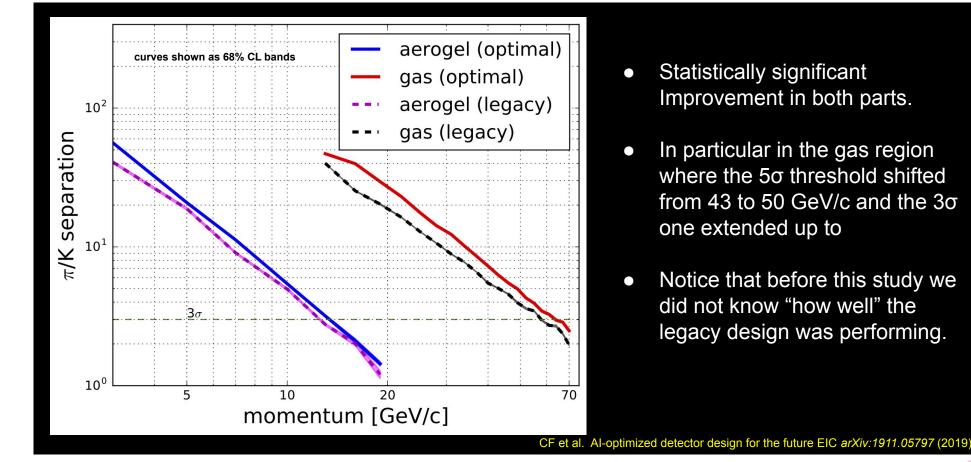
- fast generative models, e.g., GANs or VAEs
- A.I. driven design, e.g., Bayesian optimization


Yaohang Li (ODU) **ETHER** Cristiano Fanelli (MIT) **AI-optimized Detector Design** Nicholas Polys (VT) **Advances In Human-Centered AI** Noëlie Cherrier (Saclay) **Event classification with ML at CLAS12** Veronique Ziegler (JLAB) **CLAS12 Tracking with ML** Abdullah Farhat (ODU) **ML to reconstruct DIS kinematics**

Google document for discussions

Empirically Trained Hadronic Event Regenerator (ETHER) Yaohang Li (ODU)

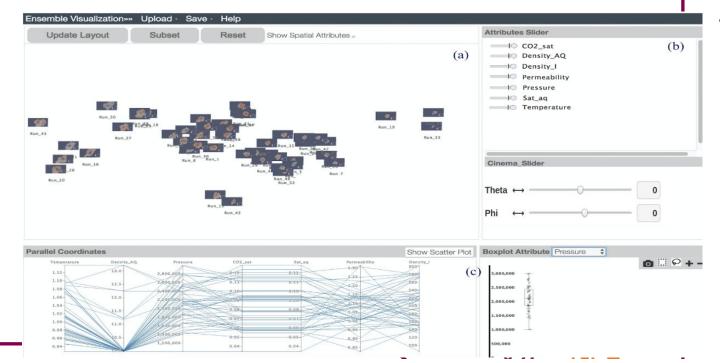
- LDRD project at Jefferson Lab: theorists interpolate across many different experiments, in a way that they could never do by stitching all the experiments together
- currently: study GAN as a repository of the behavior of the theory as expressed in Pythia (later real data)
- working well for single beam energy and inclusive single electrons / single electron and pion
- varying beam energy facing difficulty (variational GAN based event generators)



A.I. for Nuclear Physics

Al-optimized Detector Design

Jefferson Lab


- automated, highly parallelized, self consistent framework for detector design
- specific application for the dual-RICH of the future EIC has been shown
- statistically significant improvement w.r.t. baseline design found
- tested with O(20) parameters, ways to deal with O(100) parameters, possible to add cost

Advances In Human-Centered A.I.

Semantic Interaction

- Exploratory platform to find High-D relationships
- Offload the hard stuff to ML, but let the expert drive
- Manipulate CINEMA thumbnails (eg 3D projections)

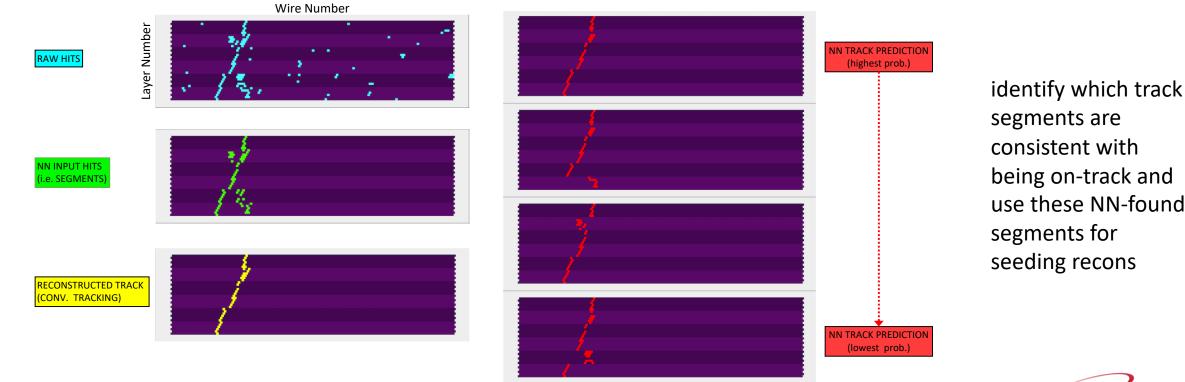
Visualization

- makes debugging models and code easier
- key component of discovery and communication
- better visualization tools can help build better models and analytic capabilities for A.I. / ML

Event classification with ML at CLAS12

Noëlie Cherrier (CEA)

- build a selector for DVCS events
- uses feature construction to get new discriminative variables
- implementation in generalized additive models (GAMs)
- GAM makes better use of the correlations between the variables than other approaches, out-performs conventional approaches on efficiency and purity


Open questions

- fair comparisons of the different methods
- objectively assess interpretability
- how to apply to real data

CLAS12 Tracking with ML

- combinatorics in resolving ghost tracks, noise rejection takes considerable time:
 - Al-assisted tracking to speed it up
 - evaluate different NN approaches
- track reconstruction is ~5x faster using NN for segment finding
- NN tracking finds tracks missed with conventional tracking, in presence of high background. But also the reverse happens. Studying tracking efficiency is underway (currently ~99.5% accuracy).

ML to reconstruct **DIS** kinematics

Method		Required Measurements		Strengths		Limitations	
Electron		$E_{e'}$, $\theta_{e'}$		Precise S		Sensitive to QED radiation	
Jacques-Blondel		$\delta_{\mathcal{H}}$, $P_{T,\mathcal{H}}$				Needs precise energy measurements	
Double-Angle		$ heta_{e'}$, $\gamma_{\mathcal{H}}$		-		Poor resolution at low x , ow Q^2	
Bin	Events	$Q^{2}\left(GeV^{2} ight)$	x	<i>x</i> R	MSE	Q^2 RMSE	
1	114606	80 – 160	0.0024 – 0.010	NN: 0.0040 JB: 0.0042	EL: 0.0029 DA: 0.0012	NN: 22.705 JB: 204.39	EL: 14.810 DA: 20.753
2	65501	160 - 320	0.0024 - 0.010	NN: 0.0049 JB: 0.0053	EL: 0.0014 DA: 0.001 3		EL: 29.609 DA: 36.397
3	74382	320 – 640	0.01 - 0.05	NN: 0.0053 JB: 0.0086	EL: 0.0226 DA: 0.0063	NN: 60.198 JB: 311.52	EL: 64.426 DA: 82.069
4	47055	640 – 1280	0.01 - 0.05	NN: 0.0046 JB: 0.0103	EL: 0.0061 DA: 0.0047	NN: 96.406 JB: 792.58	EL: 105.55 DA: 151.91
5	60684	1280 – 2560	0.025 – 0.150	NN: 0.0102 JB: 0.0194	EL: 0.0262 DA: 0.0154		EL: 216.84 DA: 283.20
6	46242	2560 - 5120	0.05 – 0.25	NN: 0.0154 JB: 0.0303	EL: 0.0333 DA: 0.0249		EL: 435.00 DA: 509.29
7	47380	5120 – 10240	0.06 - 0.40	NN: 0.0197 JB: 0.0452	EL: 0.0358 DA: 0.0327	NN: 712.45 JB: 3368.6	EL: 745.37 DA: 831.62
8	28507	10240 – 20480	0.10-0.6	NN: 0.0288 JB: 0.0791	EL: 0.0454 DA: 0.0433	NN: 1553.4 JB: 7096.9	EL: 1660.8 DA: 1796.4

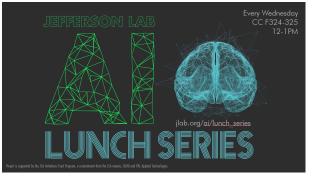
Abdullah Farhat (ODU, EIC²)

- reconstruct kinematic variables x and Q^2 at collider via ML
- using ZEUS MC at HERA

- still working on the low kinematic range, outperforms conventional methods elsewhere
- did consider dividing the network into several for the different regions of the detector, for now decided to work with a single network covering the full detector

Summary: Multidisciplinary approach

- interplay between Mathematics, Computer Science, and NP
 - computer scientists need problems to solve
 - NP problems give insights into research in computer science and mathematics
 - great opportunity for education
- related to in NP (and HEP) need closer connection between experiment and theory


• A.I./ML research

- scientific, systematic approach to applying A.I. / ML approaches to NP problems
- activation functions, network design particular to NP applications
- building efficient networks no more complex than necessary
- NP analysis:
 - want to extract information from **all** the data and find correlations / common features
 - key difference with respect to HEP
- need to trust A.I. / ML and AI
 - drive for *explainable AI* and *uncertainty quantification*
 - human interaction could be applied with great benefit to better understand the requirements and dynamics of such criteria in the NP domain
 - debatable whether *explainable* is a useful criterion for a ML model. We don't have the words for theories we haven't discovered yet

reference datasets for A.I. / ML development in NP

- always an issue to get access to big real datasets
 - amount of training data required often unknown
 - often two orders more data for simulations / training required than data
- important to cultivate ML development
- but, always difficult to understand from outside the experiment what the data means
 - common struggle for analysis preservation
 - project by the library community to address open data: <u>Open Science Framework</u>
- question to NP community: Can we as a group figure out what datasets to ask for?
 - the data was paid for by the DOE in the first place, after all
 - we have to ask, it's not going to magically just appear on the web
 - we need data to make progress
- pose open challenges and run contests
 - this has really worked to draw in new young people and new ideas
 - give prizes!
 - Can we think about benchmark problems?

Summary: Simulation challenges

Identify challenges coming over the next few years? pick our top problems?

- Accelerating simulations
 - calorimeter in particular
 - but also PID, e.g., Cerenkov detectors
- A.I driven detector design Bayesian optimization for EIC detector R&D
- HPC utilization
 - Experimental NP, HEP have few or no payloads appropriate to the LCF/Exascale which are accelerator based.
 - ML is the best near term prospect for using them effectively.
 - Can we find the ML payloads? Do they use substantial processing resources?
- ML for event generators
 - replace models with ML as we do in detector simulations (e.g., LUND string model)

Thank you very much for the discussions