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Simulations in Experiment and Theory
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The role of A.I. in simulations
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Lesson learned High-precision QCD measurements require 
high-precision simulations 

Statistical accuracy for precise hypothesis testing
• up to trillion of simulated events required (HL-LHC )
• often computationally intensive, in particular calorimeter 

simulations 

Common alternatives
• fast simulations with computationally efficient 

approximations, e.g., parameterizations or look-up tables
• still insufficient accuracy for high-precision measurements

Promising alternatives 
• fast generative models, e.g., GANs or VAEs
• A.I. driven design, e.g., Bayesian optimization 



Contributions to discussions

Yaohang Li (ODU) ETHER
Cristiano Fanelli (MIT) AI-optimized Detector Design
Nicholas Polys (VT) Advances In Human-Centered AI
Noëlie Cherrier (Saclay) Event classification with ML at CLAS12
Veronique Ziegler (JLAB) CLAS12 Tracking with ML
Abdullah Farhat (ODU) ML to reconstruct DIS kinematics

Google document for discussions
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Empirically Trained Hadronic Event Regenerator (ETHER)
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Yaohang Li (ODU)

• LDRD project at Jefferson Lab: theorists interpolate across many different experiments, in a way that they could never 
do by stitching all the experiments together

• currently: study GAN as a repository of the behavior of the theory as expressed in Pythia (later real data)
• working well for single beam energy and inclusive single electrons / single electron and pion 
• varying beam energy facing difficulty (variational GAN based event generators) 



AI-optimized Detector Design
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Cristiano Fanelli (MIT, EIC2)

��

($5/<�67233,1*

G5,&+�3HUIRUPDQFH�#�WKH�RSWLPDO�GHVLJQ�SRLQW�

Ɣ 6WDWLVWLFDOO\�VLJQLILFDQW�
,PSURYHPHQW�LQ�ERWK�SDUWV�

Ɣ ,Q�SDUWLFXODU�LQ�WKH�JDV�UHJLRQ�
ZKHUH�WKH��ı�WKUHVKROG�VKLIWHG�
IURP����WR����*H9�F�DQG�WKH��ı�
RQH�H[WHQGHG�XS�WR�

Ɣ 1RWLFH�WKDW�EHIRUH�WKLV�VWXG\�ZH�
GLG�QRW�NQRZ�³KRZ�ZHOO´�WKH�
OHJDF\�GHVLJQ�ZDV�SHUIRUPLQJ�

FXUYHV�VKRZQ�DV�����&/�EDQGV�

&)�HW�DO���$,�RSWLPL]HG�GHWHFWRU�GHVLJQ�IRU�WKH�IXWXUH�(,&�DU;LY������������������

&��)DQHOOL�7KH�$,�IRU�1XFOHDU�3K\VLFV�ZRUNVKRS�0DU��������

• automated, highly parallelized, self consistent framework for detector design
• specific application for the dual-RICH of the future EIC has been shown
• statistically significant improvement w.r.t. baseline design found
• tested with O(20) parameters, ways to deal with O(100) parameters, possible to add cost



Advances In Human-Centered A.I.
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Nicholas Polys (VT)
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Visualization

• makes debugging 
models and code easier

• key component of 
discovery and 
communication

• better visualization tools 
can help build better 
models and analytic 
capabilities for A.I. / ML

Semantic Interaction



Event classification with ML at CLAS12
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Noëlie Cherrier (CEA)

• build a selector for DVCS events
• uses feature construction to get new discriminative variables
• implementation in generalized additive models (GAMs)
• GAM makes better use of the correlations between the variables than other approaches, out-performs conventional 

approaches on efficiency and purity

Open questions
• fair comparisons of the different methods
• objectively assess interpretability
• how to apply to real data



CLAS12 Tracking with ML

• combinatorics in resolving ghost tracks, noise rejection takes considerable time:
• AI-assisted tracking to speed it up
• evaluate different NN approaches

• track reconstruction is ~5x faster using NN for segment finding
• NN tracking finds tracks missed with conventional tracking, in presence of high background. But also the 

reverse happens. Studying tracking efficiency is underway (currently ~99.5% accuracy).

A.I. for Nuclear Physics 9

Veronique Ziegler (JLAB)
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ML to reconstruct DIS kinematics
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Abdullah Farhat (ODU, EIC2)
Motivation for a Machine Learning Reconstruction

Method Required 
Measurements

Strengths Limitations

Electron ௘ᇲܧ ௘ᇲߠ, Precise Sensitive to QED radiation
Jacques-Blondel ࣢ߜ , ்ܲ,࣢ Resistant to QED 

radiation
Needs precise energy 
measurements

Double-Angle ௘ᇲߠ , ࣢ߛ Does not need precise 
energy measurements

Poor resolution at low ݔ, 
low ܳଶ

The choice of reconstruction method determines 
the size of systematic uncertainties

Bin Events ૛ࡽ ૛ࢂࢋࡳ ࢞ ࢞ RMSE ૛ࡽ RMSE

1 114606 80 – 160 0.0024 –
0.010

NN: 0.0040        EL: 0.0029
JB:  0.0042        DA: 0.0012

NN: 22.705        EL: 14.810
JB:  204.39         DA: 20.753

2 65501 160 – 320 0.0024 –
0.010

NN: 0.0049         EL: 0.0014
JB:  0.0053         DA: 0.0013

NN: 35.068        EL: 29.609
JB:  405.88         DA: 36.397

3 74382 320 – 640 0.01 – 0.05 NN: 0.0053      EL: 0.0226
JB:  0.0086       DA: 0.0063

NN: 60.198        EL: 64.426
JB:  311.52         DA: 82.069

4 47055 640 – 1280 0.01 – 0.05 NN: 0.0046       EL: 0.0061
JB:  0.0103         DA: 0.0047

NN: 96.406       EL: 105.55
JB:  792.58        DA: 151.91

5 60684 1280 – 2560 0.025 –
0.150

NN: 0.0102         EL: 0.0262
JB:  0.0194         DA: 0.0154

NN: 195.70        EL: 216.84
JB:  1012.1         DA: 283.20

6 46242 2560 – 5120 0.05 – 0.25 NN: 0.0154         EL: 0.0333
JB:  0.0303         DA: 0.0249

NN: 410.11        EL: 435.00
JB:  1694.9         DA: 509.29

7 47380 5120 –
10240

0.06 – 0.40 NN: 0.0197       EL: 0.0358
JB:  0.0452        DA: 0.0327

NN: 712.45        EL: 745.37
JB:  3368.6         DA: 831.62

8 28507 10240 –
20480

0.10 – 0.6 NN: 0.0288       EL: 0.0454
JB:  0.0791        DA: 0.0433

NN: 1553.4        EL: 1660.8
JB:  7096.9         DA: 1796.4

• still working on the low kinematic range, 
outperforms conventional methods 
elsewhere

• did consider dividing the network into 
several for the different regions of the 
detector, for now decided to work with a 
single network covering the full detector

• reconstruct kinematic variables x and Q^2 
at collider via ML

• using ZEUS MC at HERA



Summary: Multidisciplinary approach 

• interplay between Mathematics, Computer Science, and NP
• computer scientists need problems to solve
• NP problems give insights into research in computer science and mathematics 
• great opportunity for education

• related to in NP (and HEP) need closer connection between experiment and theory

• A.I./ML research
• scientific, systematic approach to applying A.I. / ML approaches to NP problems
• activation functions, network design particular to NP applications
• building efficient networks no more complex than necessary
• NP analysis: 

• want to extract information from all the data and find correlations / common features
• key difference with respect to HEP

• need to trust A.I. / ML and AI
• drive for explainable AI and uncertainty quantification
• human interaction could be applied with great benefit to better understand the 

requirements and dynamics of such criteria in the NP domain
• debatable whether explainable is a useful criterion for a ML model. We don’t have the 

words for theories we haven’t discovered yet
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Summary: Data science is about data

• reference datasets for A.I. / ML development in NP
• always an issue to get access to big real datasets

• amount of training data required often unknown
• often two orders more data for simulations / training required than data

• important to cultivate ML development
• but, always difficult to understand from outside the experiment what the data means

• common struggle for analysis preservation
• project by the library community to address open data: Open Science Framework

• question to NP community: Can we as a group figure out what datasets to ask for?
• the data was paid for by the DOE in the first place, after all
• we have to ask, it’s not going to magically just appear on the web
• we need data to make progress

• pose open challenges and run contests
• this has really worked to draw in new young people and new ideas
• give prizes!
• Can we think about benchmark problems?
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https://osf.io/


Summary: Simulation challenges

Identify challenges coming over the next few years? pick our top problems?

• Accelerating simulations
• calorimeter in particular
• but also PID, e.g., Cerenkov detectors

• A.I driven detector design Bayesian optimization for EIC detector R&D
• HPC utilization

• Experimental NP, HEP have few or no payloads appropriate to the LCF/Exascale which are 
accelerator based. 

• ML is the best near term prospect for using them effectively. 
• Can we find the ML payloads? Do they use substantial processing resources?

• ML for event generators
• replace models with ML as we do in detector simulations (e.g., LUND string model)
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A.I. for Nuclear Physics

Thank you very much for the discussions


