Al-optimized Detector Design

C. Fanelli The AI for Nuclear Physics workshop Mar 4, 2020

Al-optimized detector design for the future Electron-lon Collider: the dual-radiator RICH case

E. Cisbani^{1,2} A. Del Dotto³ C.Fanelli^{4,5,*} M. Williams⁵ M. Alfred⁶ F. Barbosa⁴ L. Barion⁷ V. Berdnikov⁸ W. Brooks⁹ T. Cao¹⁰ M. Contalbrigo⁷ S. Danagoulian¹¹ A. Datta¹² M. Demarteau¹³ A. Denisov¹⁴ M. Diefenthaler⁴ A. Durum¹⁴ D. Fields¹² Y. Furletova⁴ C. Gleason¹⁵ M. Grosse-Perdekamp¹⁶ M. Hattawy¹⁷ X. He¹⁸ H. van Hecke¹⁹ D. Higinbotham⁴ T. Horn⁸ C. Hyde¹⁷ Y. Ilieva¹⁵ G. Kalicy⁸ A. Kebede¹¹ B. Kim²⁰ M. Liu¹⁹ J. McKisson⁴ R. Mendez⁹ P. Nadel-Turonski²¹ I. Pegg⁸ D. Romanov⁴ M. Sarsour¹⁸ C.L. da Silva¹⁹ J. Stevens²² X. Sun¹⁸ S. Syed¹⁸ R. Towell²³ J. Xie²⁴ Z.W. Zhao²⁵ B. Zihlmann⁴ C. Zorn⁴

arXiv:1911.05797v1 [physics.ins-det] 13 Nov 2019

Automated Applications

Al techniques that can optimize the design of complex, large scale experiments can revolutionize the way experimental nuclear and particle physics is done

Electron Ion Collider

Url: energy.gov/EIC

A machine for delving deeper than ever before into the building blocks of matter

EIC will be the only electron-nucleus collider operating in the world and will be built in partnership with JLab.

It will consist of two intersecting accelerators, one producing an intense beam of electrons, the other a high-energy beam of protons or heavier atomic nuclei

Department of Energy

ENERGY.GOV

U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

JANUARY 9, 2020

Home » U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility

WASHINGTON, D.C. - Today, the U.S. Department of Energy

(DOE) announced the selection of Brookhaven National Laboratory in Upton, NY, as the site for a planned major new nuclear physics research facility.

The Electron Ion Collider (EIC), to be designed and constructed over ten years at an estimated cost between \$1.6 and \$2.6 billion, will smash electrons into protons and heavier atomic nuclei in an effort to penetrate the mysteries of the "strong force" that binds the atomic nucleus together.

Detector Concepts

Different detector concepts...

h-endcap: a dual-radiator RICH needed to cover continuously momenta up to 50 GeV/c

e-endcap: a small lens focused aerogel RICH for momenta up to 10 GeV/c

barrel: DIRC provide a compact and cost effective way to cover momenta up to 6 GeV/c

TOF (and or dE/dx in the TPC) can cover the low momenta region

Bayesian Optimization

- BO is a strategy developed for global optimization.
- After gathering evaluations BO builds a posterior distribution used to construct an acquisition function.
- This cheap function determines what is next query point.

Case Study: dRICH

- 6 Identical open sectors (petals)
- Optical sensor elements: 8500 cm²/sector, 3 mm pixel
- Large focusing mirror

aerogel (4 cm, n(400 nm) 1.02) + 3 mm acrylic filter + gas (1.6 m, nC₂F₆ 1.0008)

- Continuous momentum coverage. Simple geometry/optics, cost effective.
- Legacy design from EICUG2017

Figure of Merit

$$N\sigma = rac{||\langle heta_K
angle - \langle heta_\pi
angle||\sqrt{N_{m \gamma}}}{\sigma_{ heta}^{1p.e.}}$$

$$N_{\gamma} = (N_{\gamma}^{\pi} + N_{\gamma}^{K})/2$$

$$h = 2 \cdot \left[\frac{1}{(N\sigma)|_1} + \frac{1}{(N\sigma)|_2}\right]^{-1}$$

@ p_1 = 14 GeV/c (aerogel) and p_2 = 60 GeV/c (gas)

considering the two parts disentangled

dRICH Performance @ the optimal design point

- Statistically significant Improvement in both parts.
- In particular in the gas region where the 5σ threshold shifted from 43 to 50 GeV/c and the 3σ one extended up to
- Notice that before this study we did not know "how well" the legacy design was performing.

CF et al. Al-optimized detector design for the future EIC arXiv:1911.05797 (2019)

The Model and the Optimized FoM

$$N\sigma = rac{||\langle heta_K
angle - \langle heta_\pi
angle||\sqrt{N_{m{\gamma}}}}{\sigma_{ heta}^{1p.e.}}$$

CF et al. Al-optimized detector design for the future EIC arXiv:1911.05797 (2019)

C. Fanelli The AI for Nuclear Physics workshop Mar 4, 2020

Comparison with Random Search

Convergence Criteria

- We defined a set of conditions to ensure convergence.
- These correspond to the logic AND of booleans on each feature and on the variation of the figure of merit.
- They are built on standardized Z and Fisher statistics.
- Pre-processing of data required to remove outliers.

Tolerance Regions

• BO provides a model of how the FoM depends on the parameters, hence it is possible to use the posterior to define a tolerance on the parameters (regions ensuring improved PID, see previous slide).

• Larger than the construction tolerances on each parameter. Notice a small lateral shift of the tiles has negligible impact on the PID capability.

Vision Slide

 "AI techniques that can optimize the design of complex, large scale experiments can revolutionize the way experimental nuclear and particle physics is done"

Bayesian Optimization

DL-boosted

- Al for detector design
- Intelligent detection systems able to self-calibrate/align

• etc

Evolutionary autoML Meta-learning

Reinforcement Learning

Summary

- Presented AI-driven detector design for the case of the dual-RICH in EIC.
- Key-features: automated, highly-parallelized, self-consistent.
- These same tools can be extended and applied to other detectors and possibly to the entire experiment, making the EIC R&D one of the first programs to systematically exploit AI in the detector-design phase.
- Al can help coordinate the efforts of different groups developing different sub-detectors towards the final global detector design.

Bayesian Optimization

- GPs are the generalization of a Gaussian distribution to a distribution over functions, instead of random variables.
- GP is completely specified by its mean function and covariance function.

- How should I read this?
 - **Solid line**: function we are trying to min/max
 - Shaded region: probability model (we know the actual points already evaluated but we are more uncertain in regions where we haven't).
 - In every point a normal distribution of the potential performance function

Next points

- Where am I going to sample next?
- We use utility functions called acquisition functions (formalize what is the best guess)
- Expected improvements is one example: find next point that improves the performance the most.

The Model and the Optimized FoM

Noise Studies

- Dedicated studies to characterize the noise as this is an optimization of a noisy function
- We choose N tracks = 400 based on the studies on noise to minimize as much as possible computing time during simulation.

symbol	description				
Т	maximum number of calls				
M	points generated in parallel (GP)				
N	pions (and kaons) per sample				
kappa	controls variance in predicted values				
xi	controls improvement over previous best values				
noise	expected noise (relative)	2.5%			
(list of hyperparameters)					

(list of hyperparameters)

Construction Constraints

The idea is that we have a bunch of parameters to optimize that characterize the detector design. We know from previous studies their ranges and the construction tolerances.

parameter	description	range [units]	tolerance [units]	
R	mirror radius	[290,300] [cm]	100 [µm]	
pos r	radial position of mirror center	[125,140] [cm]	100 [µm]	siled
pos 1	longitudinal position of mirror center	[-305,-295] [cm]	100 [µm]	Berogel detector
tiles x	shift along x of tiles center	[-5,5] [cm]	100 [µm]	60° gas
tiles y	shift along y of tiles center	[-5,5] [cm]	100 [µm]	
tiles z	shift along z of tiles center	[-105,-95] [cm]	100 [µm]	mirror
naerogel	aerogel refractive index	[1.015,1.030]	0.2%	
taerogel	aerogel thickness	[3.0,6.0] [cm]	1 [mm]	

Ranges depend mainly on mechanical constraints and optics requirements. These requirements can change in the next future based on inputs from prototyping.