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Overview

Overview: Inverse Problems

Most of data science problems can be formulated as an inverse
problem.

Learning a function (an image or a signal) from measured data is an
inverse problem.

A major challenge of solving an inverse problem is its instability: A
small perturbation in data may lead to large changes in solution.

Most measurement data contain noise. Hence, it is inevitable to for
us deal with the instability when solving an inverse problem.

Inverse problems have to be solved by regularization.

We shall illustrate the idea of solving inverse problems by an example:
reconstruction of the Generalized Parton Distribution.
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Overview

The Generalized Parton Distribution

The parton model, proposed by Richard Feynman (1969)1, describes
the inner structure of hadrons, such as protons and neutrons. The
aim of the parton model is to analyze high-energy hadron collision.

The Generalized Parton Distribution (GPD) was proposed2 to catch
kinetic characteristics of partons.

GPD is to represent the transverse spatial image of quarks and gluons,
as a function of their longitudinal momentum fraction in the proton
and the neutron.
GPD encodes correlations between the transverse position and
longitudinal momentum of partons inside nucleon.

1Richard P Feynman. Very high-energy collisions of hadrons. Physical Review Letters 23.24 (1969), p. 1415.
2Dieter Mueller et al. Wave Functions, Evolution Equations and Evolution Kernels from Light-Ray Operators of

QCD. Fortschritte der Physik/Progress of Physics 42.2 (1994), pp. 101–141.
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Overview

The Goal of This Study: Reconstruction of the Generalized
Parton Distribution

Consider the system of equations and constraints for GPD.

Formulate the construction of GPD as an inverse problem.

Use orthogonal polynomials such as

Chebeshev polynomials
Legendre polynomials

to discretize the equations and constraints.

Treat the resulting ill-posed problem by sparse regularization.

Solve the non-smooth optimization problem using the fixed-point
proximity algorithm.
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DVCS

Deeply Virtual Compton Scattering (DVCS)

In a nuclear physics experiment, high energy electron e is used to hit the quark h
in the proton. It generates an outcoming electron e, a quark h and a high-energy
photon γ. This can be described as3 4

e(k) + h(P1)→ e(k′) + h(P2) + γ(q2).

1 e− electron, h− quark, γ − photon.

2 k − the four-momentum of the initial electron.

3 P1 − the four-momentum of the initial nucleon.

4 k′ − the four-momentum of the final electron.

5 P2 − the four-momentum of the final nucleon.

6 q2 − the four-momentum of the final photon.

3Xiangdong Ji. Off-forward parton distributions. Journal of Physics G: Nuclear and Particle Physics 24.7
(1998), p. 1181.

4Xiangdong Ji. Gauge-invariant decomposition of nucleon spin. Physical Review Letters 78.4 (1997), p. 610.
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DVCS

Figure 1: Scattering Figure5

e(k) + h(P1)→ e(k′) + h(P2) + γ(q2).

5Andrei V Belitsky, Dieter Mueller, and A Kirchner. Theory of deeply virtual Compton scattering on the
nucleon. Nuclear Physics B 629.1-3 (2002), pp. 323–392.
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DVCS

Crucial Physics Variables

1 q1 := k − k′, the four-momentum of the virtual photon.

2 ∆ := P2 − P1 = q1 − q2, overall four-momentum transfer.

3 Q2 := −q2
1 = −(k − k′)2, the virtuality of the absorbed virtual photon.

4 x ∈ [−1, 1], longitudinal momentum fraction carried by constituent parton.

5 ξ := (P1 − P2)+/(P1 + P2)+ ∈ [−1, 1], longitudinal momentum fraction transferred to
the parton.

6 t := ∆2, invariant quantity measuring four-momentum transfer.

Suppose the interval of the invariant quantity t which we are interested is bounded. We
can then use an affine transformation to convert the domain of t into the bounded
interval (−1, 1).
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Equations

Singular Integral Equations for GPDs

The GPD functions [H,E, H̃, Ẽ] are determined by the singular integral
equations from the Compton form factors (CFFs) [H, E , H̃, Ẽ ]: For ξ, t ∈ (−1, 1),

H(ξ, t) =

∫ 1

−1

[
1

x− ξ
+

1

x+ ξ

]
H(x, ξ, t) dx+ iπ[H(−ξ, ξ, t)−H(ξ, ξ, t)],

E(ξ, t) =

∫ 1

−1

[
1

x− ξ
+

1

x+ ξ

]
E(x, ξ, t) dx+ iπ[E(−ξ, ξ, t)− E(ξ, ξ, t)],

H̃(ξ, t) =

∫ 1

−1

[
1

x− ξ
− 1

x+ ξ

]
H̃(x, ξ, t) dx− iπ[H̃(−ξ, ξ, t) + H̃(ξ, ξ, t)],

Ẽ(ξ, t) =

∫ 1

−1

[
1

x− ξ
− 1

x+ ξ

]
Ẽ(x, ξ, t) dx− iπ[Ẽ(−ξ, ξ, t) + Ẽ(ξ, ξ, t)].

The CFFs [H, E , H̃, Ẽ ] are obtained from experiments6.

6Andrei V Belitsky, Dieter Mueller, and A Kirchner. Theory of deeply virtual Compton scattering on the
nucleon. Nuclear Physics B 629.1-3 (2002), pp. 323–392.
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Equations

Twist-Two Quark GPDs

Let n denote the light-like vector and P := P1 + P2.

The twist-two quark GPDs are given by7

〈P2|ψ̂(−κn)γ · nψ(κn)|P1〉 =

∫ 1

−1
(h · nH(x, ξ, t) + e · nE(x, ξ, t))e−ixκ(P ·n) dx,

〈P2|ψ̂(−κn)γ ·nγ5ψ(κn)|P1〉 =

∫ 1

−1
(h̃ ·nH̃(x, ξ, t) + ẽ ·nẼ(x, ξ, t))e−ixκ(P ·n) dx.

7Andrei V Belitsky, Dieter Mueller, and A Kirchner. Theory of deeply virtual Compton scattering on the
nucleon. Nuclear Physics B 629.1-3 (2002), pp. 323–392.
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Equations

Reformulation of the Singular Integral Equations

We reformulate the singular equation in terms of the Cauchy singular kernel:
For ξ, t ∈ (−1, 1),

H(ξ, t) =

∫ 1

−1

1

x− ξ
[H(x, ξ, t)−H(−x, ξ, t)] dx+ iπ[H(−ξ, ξ, t)−H(ξ, ξ, t)],

E(ξ, t) =

∫ 1

−1

1

x− ξ
[E(x, ξ, t)− E(−x, ξ, t)] dx+ iπ[E(−ξ, ξ, t)− E(ξ, ξ, t)],

H̃(ξ, t) =

∫ 1

−1

1

x− ξ

[
H̃(x, ξ, t) + H̃(−x, ξ, t)

]
dx− iπ[H̃(−ξ, ξ, t) + H̃(ξ, ξ, t)],

Ẽ(ξ, t) =

∫ 1

−1

1

x− ξ

[
Ẽ(x, ξ, t) + Ẽ(−x, ξ, t)

]
dx− iπ[Ẽ(−ξ, ξ, t) + Ẽ(ξ, ξ, t)].
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Constraints

Initial Constraints

Let q be the quark distribution, q̃ the anti-quark distribution, ∆q the quark
helicity distribution and ∆q̃ the anti-quark helicity distribution.
We have the initial constraints

H(x, 0, 0) = q(x), 0 6 x < 1,

H̃(x, 0, 0) = ∆q(x), 0 6 x < 1,

H(x, 0, 0) = −q̃(−x), −1 < x < 0,

H̃(x, 0, 0) = ∆q(−x), −1 < x < 0.
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Constraints

Initial Constraints: An Illustration

Figure 2: Forward limit for H(x, ξ, 0)8

8K Goeke, Maxim V Polyakov, and M Vanderhaeghen. Hard exclusive reactions and the structure of hadrons.
arXiv preprint hep-ph/0106012 (2001).
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Constraints

Moment Constraints

For ξ, t ∈ (−1, 1),

∫ 1

−1
xn−1H(x, ξ, t) dx =

bn−1
2 c∑

k=0

(2ξ)2kAn,k(t) +mod(n− 1, 2)(2ξ)nCn(t),

∫ 1

−1
xn−1E(x, ξ, t) dx =

bn−1
2 c∑

k=0

(2ξ)2kBn,k(t)−mod(n− 1, 2)(2ξ)nCn(t),

where An,k, Cn, Bn,k are arbitrary functions.
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Mathematical Model of GPDs

Summary of the Mathematical Model of GPDs

Integral equations:

H(ξ, t) =

∫ 1

−1

1

x− ξ
[H(x, ξ, t)−H(−x, ξ, t)] dx− iπ[H(ξ, ξ, t)−H(−ξ, ξ, t)], ξ, t ∈ (−1, 1), (5.1)

E(ξ, t) =

∫ 1

−1

1

x− ξ
[E(x, ξ, t)− E(−x, ξ, t)] dx− iπ[E(ξ, ξ, t)− E(−ξ, ξ, t)], ξ, t ∈ (−1, 1), (5.2)

H̃(ξ, t) =

∫ 1

−1

1

x− ξ

[
H̃(x, ξ, t) + H̃(−x, ξ, t)

]
dx− iπ[H̃(ξ, ξ, t) + H̃(−ξ, ξ, t)], ξ, t ∈ (−1, 1), (5.3)

Ẽ(ξ, t) =

∫ 1

−1

1

x− ξ

[
Ẽ(x, ξ, t) + Ẽ(−x, ξ, t)

]
dx− iπ[Ẽ(ξ, ξ, t) + Ẽ(−ξ, ξ, t)], ξ, t ∈ (−1, 1), (5.4)

with constraints

H(x, 0, 0) = q(x), H̃(x, 0, 0) = ∆q(x), 0 6 x < 1 (5.5)

H(x, 0, 0) = −q̃(−x), H̃(x, 0, 0) = ∆q(−x), −1 < x < 0 (5.6)

∫ 1

−1
x
n−1

H(x, ξ, t) dx =

⌊
n−1
2

⌋∑
k=0

(2ξ)
2k
An,k(t) + mod(n− 1, 2)(2ξ)

n
Cn(t), (5.7)

∫ 1

−1
x
n−1

E(x, ξ, t) dx =

⌊
n−1
2

⌋∑
k=0

(2ξ)
2k
Bn,k(t)−mod(n− 1, 2)(2ξ)

n
Cn(t). (5.8)
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The Cauchy Singular Integral Operator and Orthogonal
Polynomials

The Cauchy Singular Integral Operator and Chebyshev
Polynomials

Let Tn and Un, respectively, be the Chebyshev polynomials of order n, of
the first and second kind. That is,

Tn(x) = cosnθ, Un(x) =
sin(n+ 1)θ

sin θ
, cos θ = x, θ ∈ (0, 2π).

Tn and Un are connected by the Cauchy Singular Integral Operator9:∫ 1

−1

Un(t)
√

1− t2
t− x

dt = −πTn+1(x), x ∈ (−1, 1)

∫ 1

−1

Tn(t)

(t− x)
√

1− t2
dt =

{
0, n = 0,

πUn−1(x), n > 1,
x ∈ (−1, 1).

9David Elliott. Orthogonal polynomials associated with singular integral equations having a Cauchy kernel.
SIAM Journal on Mathematical Analysis 13.6 (1982), pp. 1041–1052.
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The Cauchy Singular Integral Operator and Orthogonal
Polynomials

The Cauchy Singular Integral Operator and Legendre
Polynomials

The Legendre polynomials Pn and the second kind Legendre function
Qn are connected by the Cauchy singular integral operator in the way:∫ 1

−1

Pn(t)

t− x
dt = −2Qn(x), x ∈ (−1, 1).

The connection of the Cauchy singular integral operator with
orthogonal polynomials motivates us to use orthogonal polynomials
for approximation of GPDs.
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Approximation of the Moment Constraints

Approximate Subspaces of [H,E]

Let In :=
{

2i : i = 0, 1, . . . ,
⌊
n−1

2

⌋}
, Vn := span{Pk : k ∈ In}.

The moment constraints (5.7)-(5.8) are equivalent to that for
ξ, t ∈ (−1, 1),∫ 1

−1
xn−1H(x, ξ, t)dx ∈ Vn, n = 1, 2, . . . (7.1)∫ 1

−1
xn−1E(x, ξ, t)dx ∈ Vn, n = 1, 2, . . . (7.2)∫ 1

−1
xn−1 (H(x, ξ, t) + E(x, ξ, t)) dx ∈ Vn−1, if mod(n, 2) = 0. (7.3)
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Approximation of the Moment Constraints

Representation of [H,E]

For x, ξ, t ∈ (−1, 1), define
Ψj,i,l(x, ξ, t) := ω(x)Pj(ξ)Wi(x)Pl(t),

where {Wi} is an orthogonal basis for L2([−1, 1], ω), and let

H(x, ξ, t) :=
∞∑
j=0

∞∑
i=0

∞∑
l=0

αj,i,lΨj,i,l(x, ξ, t), (7.4)

E(x, ξ, t) :=
∞∑
j=0

∞∑
i=0

∞∑
l=0

βj,i,lΨj,i,l(x, ξ, t). (7.5)

Lemma 1

The following statements are equivalent:
(1) Equation (7.1) holds.
(2)

∞∑
i=0

Gn,iαj,i,l = 0, for all j ∈ N/In, l, n, (7.6)

where Gn,i :=
∫ 1
−1 ω(x)xn−1Wi(x)dx.

(3) For odd j, αj,i,l = 0, i > 0; for even j > 2, αj,i,l = 0, i 6 j − 2.
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Approximation of the Moment Constraints

Proposition 1

If H,E have the form like (7.4) (7.5) respectively, then equations (5.7) and (5.8)
are equivalent to

H(x, ξ, t) =

∞∑
j=1

∞∑
i=2j−1

∞∑
l=0

α2j,i,lΨ2j,i,l(x, ξ, t) +

∞∑
i=0

∞∑
l=0

α0,i,lΨ0,i,l(x, ξ, t),

E(x, ξ, t) =

∞∑
j=1

∞∑
i=2j−1

∞∑
l=0

β2j,i,lΨ2j,i,l(x, ξ, t) +

∞∑
i=0

∞∑
l=0

β0,i,lΨ0,i,l(x, ξ, t),

for x, ξ, t ∈ (−1, 1), and

αn,n−1,l + βn,n−1,l = 0, for all n > 2, mod (n, 2) = 0. (7.7)
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Approximation of the Moment Constraints

According to Proposition 1, both H and E are in

X :=

f : f(x, ξ, t) :=

∞∑
j=1

∞∑
i=2j−1

∞∑
l=0

γ2j,i,lΨ2j,i,l(x, ξ, t),

+

∞∑
i=0

∞∑
l=0

γ0,i,lΨ0,i,l(x, ξ, t), f ∈ L2(Ω)

}
,

where Ω = (−1, 1)3. This motivates us to choose the approximation
subspace for [H,E] as

XN :=

f : f(x, ξ, t) :=

N/2∑
j=1

2j+N−1∑
i=2j−1

N∑
l=0

γ2j,i,lΨ2j,i,l(x, ξ, t)

+

N∑
i=0

N∑
l=0

γ0,i,lΨ0,i,l(x, ξ, t), f ∈ L2(Ω)

}
, for mod(N, 2) = 0.

Clearly, sN := dimXN = (N + 1)2(1 + 0.5N). We use {Φj : j ∈ NsN } to
denote a basis of XN .
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Discretization

Discretization of the Singular Integral Equations

We use a collocation method10 to discretize the equations. Comparing the real part of (5.1) and
(5.2) yields, respectively,

ReH(ξ, t) =

∫ 1

−1

1

x− ξ
[H(x, ξ, t)−H(−x, ξ, t)] dx, ξ, t ∈ (−1, 1) (8.1)

Re E(ξ, t) =

∫ 1

−1

1

x− ξ
[E(x, ξ, t)− E(−x, ξ, t)] dx, ξ, t ∈ (−1, 1). (8.2)

Since equations (8.1) and (8.2) have a similar form, we consider a unified equation below

f(ξ, t) =

∫ 1

−1

1

x− ξ
(u(x, ξ, t)− u(−x, ξ, t)) dx, (8.3)

where u ∈ X. For all g ∈ X, define operator K by

(Kg)(ξ, t) :=

∫ 1

−1

1

x− ξ
(g(x, ξ, t)− g(−x, ξ, t)) dx.

Equation (8.3) becomes
Ku = f.

10Zhongying Chen, Charles A Micchelli, and Yuesheng Xu. Multiscale methods for Fredholm integral equations.
Vol. 28. Cambridge University Press, 2015.
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Discretization

A Collocation Scheme

Define Y := KX, YN := KXN , X′N := Null(K)⊥ ∩ XN , where Null(K)
denotes the null space of K. Then K|X′N is bijective from X′N onto YN .
Let dN := dimX′N .
The collocation scheme for equation (8.3) is to find uN ∈ X′N such that∫ 1

−1

1

x− ξj
(uN (x, ξj , tj)− uN (−x, ξj , tj)) dx = f(ξj , tj), for all j ∈ Nm,

(8.4)
where {(ξj , tj) : j ∈ Nm} are distinct points.
Let uN :=

∑
j∈NdN

ujφj , where {φj : j ∈ NdN } is a basis for X′N . Define

K := [(Kφj)(ξi, ti) : i ∈ Nm, j ∈ NdN ],

u := [uj : j ∈ NdN ], f := [f(ξi, ti) : i ∈ Nm].

Equation (8.4) can be written in the matrix form

Ku = f . (8.5)
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Discretization

Changes of Bases

We choose a basis {φdN+1, φdN+2, . . . , φsN } for Null(K) ∩ XN . Then,
{φi : i ∈ NsN } forms a basis for XN . We wish to change to the basis
{Φi : i ∈ NsN }. There is an invertible matrix B such that

φ1

φ2
...

φsN

 = B


Φ1

Φ2
...

ΦsN

 .
Let û := Bu. Equation (8.5) becomes

K̂û = f , (8.6)

where
K̂ := [(KΦj)(ξi, ti) : i ∈ Nm, j ∈ NsN ],

and û is the coefficients of u under the basis {Φi : i ∈ NsN }.
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Discretization

Equations for [H,E]: the Real Part

Suppose we have already given data

{H(ξi, ti) : i ∈ Nm}, {E(ξ∗i , t
∗
i ) : i ∈ Np}, {H(xi, 0, 0) : i = Nk}.

We choose m = p = k. The values {xi, x∗i , ξi, ξ∗i , ti : i = 1, 2, . . . ,m} are
sampled from the uniform distribution in (0, 1) independently.
First, we consider the real part of equations (5.1) and (5.2). H and E
satisfy equations in the form (8.3). Substituting ReH for f and H for u in
(8.3), we have the following systems similar to (8.6):

K̂H ûH = fH , (8.7)

K̂EûE = fE , (8.8)

where K̂H , K̂E , fH , fE , ûH , ûE are defined in the same way as those in
(8.6).
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Discretization

Equations for [H,E]: the Imaginary Part

Considering the imaginary part of equations (5.1) and (5.2) yields

GH ûH = hH , GEûE = hE , (8.9)

where

hH := [−ImH(ξi, ti)/π : i ∈ Nm], hE := [−Im E(ξ∗i , t
∗
i )/π : i ∈ Np],

GH := [(WΦj)(ξi, ti) : i ∈ Nm, j ∈ NsN ],

GE := [(WΦj)(ξ
∗
i , t
∗
i ) : i ∈ Np, j ∈ NsN ],

(Wu)(ξ, t) := u(ξ, ξ, t)− u(−ξ, ξ, t), for any u ∈ X.
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Discretization

Matrix Form of the Initial Constraints

The initial constraints described in (5.5) and (5.6) are translated to the
matrix form

FûH = g, (8.10)

where
F := [Ψj(xi, 0, 0) : i ∈ Nk, j ∈ NsN ],

g := [H(xi, 0, 0) : i = Nk].
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Regularization and Optimization

The Discrete System for GPD

Let

G :=

diag(K̂H , K̂E)
diag(GH ,GE)

F,0k×sN

 , N :=


fH

fE

hH

hE

g

 , û :=

[
ûH

ûE

]
,

where 0k×sN is a zero matrix whose dimension is k × sN .

GPD can be solved by the discrete system

Gû = N. (9.1)

Moreover, ûE and ûH must satisfy the relationship (7.7).

System (9.1) is ill-posed. It requires regularization.

Regularization uses prior information on a potential solution to
transfer the ill-posed system to a well-posed problem.
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Regularization and Optimization

L2 Regularization

Under the hypothesis that the true solution has certain minimum energy,
we propose the L2 regularization:

min
û

{
1

2
‖Gû−N‖22 + λ‖û‖2

}
, (9.2)

where λ > 0 is a regularization parameter.
The L2 regularization problem (9.2) has a closed-form solution

û = (GTG + λI)−1(GTN).

If the solution of (9.2) is given by û =

[
ûH

ûE

]
with ûH := [ûH1 , . . . , û

H
sN

]T

and ûE := [ûE1 , . . . , û
E
sN

]T , then

HN :=
∑
j∈NsN

ûHj Φj , EN :=
∑
j∈NsN

ûEj Φj .

give solutions for H,E in XN .
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Regularization and Optimization

Sparse Solutions

Certain energy concentration in physics may require sparse
representation of solutions.

Sparse solutions are desirable also due to their efficiency in
computation.

The L1-norm promotes sparsity. It helps us concentrate energy in a
few directions.

The L2-norm does not promote sparsity. It spreads energy in all
directions.

Yuesheng Xu Old Dominion University, Norfolk, Virginia, USA Syracuse University, Syracuse, New York, USA (Emeritus) Presentation at A.I. for Nuclear Physics Workshop, March 4-6, 2020 (ODU)AI and Inverse Problems: Sparse Reconstruction of GPD 28 / 64



Regularization and Optimization

The L2-Norm vs the L1-Norm
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Regularization and Optimization

L1 Regularization

Aiming at reconstructing sparse solutions, we propose the L1

regularization11 12

min
û

{
1

2
‖Gû−N‖22 + λ‖û‖1

}
, (9.3)

where λ > 0 is a regularization parameter.

The L1 regularization leads to non-smooth minimization problems.

Since their objective functions are not differentiable, gradient-type
algorithms are not applicable. Solving non-smooth minimization
problems requires special efforts.

11Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections: Universal
encoding strategies? IEEE transactions on information theory 52.12 (2006), pp. 5406–5425.

12David L Donoho. For most large underdetermined systems of linear equations the minimal 1-norm solution is
also the sparsest solution. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant
Institute of Mathematical Sciences 59.6 (2006), pp. 797–829.
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Regularization and Optimization

Fixed-Point Proximity Algorithm I

Following the work13, we propose to use a fixed-point proximity
algorithm14 to solve (9.3).

We convert the minimization problem (9.3) to an equivalent
fixed-point equation defined via the proximity operator of the l1-norm
‖ · ‖1.

The fixed-point equation can be solved by the Picard iteration scheme
with convergence guaranteed.

The proximity operator of ‖ · ‖1 has a closed form

proxλ‖·‖1(b) = max {|b| − λ, 0} sign(b),

which leads to fast computation.

13Charles A Micchelli, Lixin Shen, and Yuesheng Xu. Proximity algorithms for image models: denoising. Inverse
Problems 27.4 (2011), p. 045009.

14Qia Li et al. Multi-step fixed-point proximity algorithms for solving a class of optimization problems arising
from image processing. Advances in Computational Mathematics 41.2 (2015), pp. 387–422.
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Regularization and Optimization

Fixed-Point Proximity Algorithm II

Choose initial point û0 and y0.

Conduct the iteration:{
ûk+1 = ûk − β(∇F (ûk) + yk),

yk+1 = ρ(I − proxλ
ρ
‖·‖1)(1

ρy
k + (ûk+1 − ûk))

where β, ρ are positive parameters, I is identity matrix,

∇F (û) = GT (Gû−N).

Stop the iteration when the relative error ‖û
k+1−ûk‖2
‖ûk+1‖2

is smaller than a

given number, and output ûk+1 as an approximate solution.

When ρ is chosen in certain range, this iteration scheme converges
linearly.
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Numerical Experiments

Simulation Data and Settings

The objective of the numerical experiments is to reconstruct the GPD
functions H and E by solving equations (5.1)-(5.8) via our proposed
method.

We use simulation data to test our method.

Choose testing functions H and E that satisfy the moment constraints.
Sample the values {xi, x∗i , ξi, ξ∗i , ti : i = 1, 2, . . . , 100} uniformly from
(0, 1).
Compute

H(ξi, ti), E(ξ∗i , t
∗
i ), H(xi, 0, 0), i = 1, 2, . . . , 100.

and add gaussian noise N(0, 0.012) to them.

Construct approximate space XN .

Solve (9.3) to obtain approximate functions of HN and EN by using
the fixed-point proximity algorithm.
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Numerical Experiments

Experiment 1: Non-Sparse H and E

We choose functions H and E in X′8, and use X6 as an approximation
space. The coefficients of H and E are showed as follows:
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Numerical Experiments

Experiment 1: Numerical Results

The best regularization parameter for both the L1 and L2 models is
0.02.

When the absolute value of a coefficient is less than 0.01, we let it be
zero.

The relative error is defined by
‖H−HN‖22
‖H‖22

for H and HN and likewise

for E and EN .

Models relative errors # of nonzero terms

H E H E

The L1 model 0.356 0.337 47 54

The L2 model 0.235 0.239 78 83
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Numerical Experiments

Experiment 1: Coefficients of the Reconstructed HN
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Numerical Experiments

Experiment 1: Coefficients of the Reconstructed EN
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Numerical Experiments

Experiment 1: The L1 model, x-Slices
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Numerical Experiments

Experiment 1: The L1 model, t-Slices
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Numerical Experiments

Experiment 1: The L1 model, ξ-Slices
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Numerical Experiments

Experiment 1: The L2 model, x-Slices
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Numerical Experiments

Experiment 1: The L2 model, ξ-Slices
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Numerical Experiments

Experiment 1: The L2 model, t-Slices
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Numerical Experiments

Experiment 2: Sparse H and E in X6

Choose

H(x, ξ, t) = P4(ξ)P5(x)P2(t)− 2P2(ξ)P1(x)P2(t), x, ξ, t ∈ (0, 1),

E(x, ξ, t) = −P0(ξ)P3(x)P2(t) + 2P2(ξ)P1(x)P2(t), x, ξ, t ∈ (0, 1).

Choose X6 as the approximation space.

Best regularization parameters for the L1 and L2 models is
respectively 0.012 and 0.05.

Models relative errors # of nonzero terms

H E H E

L1 model 0.0015 0.0017 2 2

L2 model 0.377 0.363 93 71
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Numerical Experiments

Experiment 2: Coefficients of HN
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Numerical Experiments

Experiment 2: Coefficients of EN
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Numerical Experiments

Experiment 2: the L1-Model, x-Slices
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Numerical Experiments

Experiment 2: the L1-Model, ξ-Slices
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Numerical Experiments

Experiment 2: the L1-Model, t-Slices
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Numerical Experiments

Experiment 2: the L2-Model, x-Slices
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Numerical Experiments

Experiment 2: the L2-Model, ξ-Slices
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Numerical Experiments

Experiment 2: the L2-Model, t-Slices
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Numerical Experiments

Experiment 3: H and E from X

We choose H and E from X:

H(x, ξ, t) = P4(ξ)U7(x)P2(t)
√

1− x2 − 2P2(ξ)P1(x)P2(t),

E(x, ξ, t) = −P0(ξ)U3(x)P2(t)
√

1− x2 + 2P2(ξ)P1(x)P2(t),

where x, ξ, t ∈ (0, 1), and Un denotes the second kind Chebyshev
polynomial of order n.

Clearly, H and E are not in XN , for all n = 2, 4, . . ..
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Numerical Experiments

Experiment 3: Settings and Data

We sample {xi, x∗i , ξi, ξ∗i , ti : i = 1, 2, . . . , 150} uniformly from (0, 1).

We then add gaussian noise N(0, 0.012) to
{(H(ξi, ti), E(ξ∗i , t

∗
i ), H(xi, 0, 0)) : i = 1, 2, . . . , 150}. We let D to

denote this dataset.

We choose 100 data points in D as our training set, and use the
remaining 50 data points in D{(

Ĥ(ξi, ti), Ê(ξ∗i , t
∗
i ), Ĥ(xi, 0, 0)

)
: i = 101, 102, . . . , 150

}
,

as the testing set.

We reconstruct H6 and E6 in X6 using our method.
For evaluation, we use the test relative error defined by∑150

i=101

(
|Ĥ(ξi, ti)−H6(ξi, ti)|2 + |Ĥ(xi, 0, 0)−H6(xi, 0, 0)|2

)
∑150
i=101

(
|Ĥ(ξi, ti)|2 + |Ĥ(xi, 0, 0)|2

) ,

where H6 is obtained by substituting H6 into (5.1).
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Numerical Experiments

Experiment 3: Numerical Results

The best regularization parameters for both the L1 and L2 models are
0.01.

Models test relative errors # of nonzero terms

H E H E

L1 model 0.053 0.015 37 16

L2 model 0.079 0.037 73 65
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Numerical Experiments

Experiment 3: Coefficients of HN
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Numerical Experiments

Experiment 3: Coefficients of EN
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Numerical Experiments

Experiment 3: the L1 Model, x-Slices
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Numerical Experiments

Experiment 3: the L1 Model, ξ-Slices
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Numerical Experiments

Experiment 3: the L1 Model, t-Slices
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Numerical Experiments

Experiment 3: the L2 Model, x-Slices
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Numerical Experiments

Experiment 3: the L2 Model, ξ-Slices
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Numerical Experiments

Experiment 3: the L2 Model, t-Slices
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Future Work

Future Work

We shall consider other constraints in the GPD system, in addition to
the moment and initial constraints.

We shall study the noise distribution of real nuclear physics data and
use it to formulate appropriate fidelity term.

We shall investigate prior information of the solution of GPD and use
it to choose appropriate regularization terms.

We shall implement our proposed method for real nuclear physics
data.
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Thanks

Thanks!
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