Sparse Reconstruction of the Generalized Parton Distribution

Yuesheng Xu Old Dominion University, Norfolk, Virginia, USA Syracuse University, Syracuse, New York, USA (Emeritus) Presentation at A.I. for Nuclear Physics Workshop, March 4-6, 2020

Joint work with Jie Jiang (A visiting graduate student from Sun Yat-sen University), Charles Hyde (Department of Physics, ODU) This work is supported by NSF and JLab.

Overview: Inverse Problems

- Most of data science problems can be formulated as an inverse problem.
- Learning a function (an image or a signal) from measured data is an inverse problem.
- A major challenge of solving an inverse problem is its instability: A small perturbation in data may lead to large changes in solution.
- Most measurement data contain noise. Hence, it is inevitable to for us deal with the instability when solving an inverse problem.
- Inverse problems have to be solved by regularization.
- We shall illustrate the idea of solving inverse problems by an example: reconstruction of the Generalized Parton Distribution.

The Generalized Parton Distribution

- The parton model, proposed by Richard Feynman (1969)¹, describes the inner structure of hadrons, such as protons and neutrons. The aim of the parton model is to analyze high-energy hadron collision.
- The Generalized Parton Distribution (GPD) was proposed² to catch kinetic characteristics of partons.
 - GPD is to represent the transverse spatial image of quarks and gluons, as a function of their longitudinal momentum fraction in the proton and the neutron.
 - GPD encodes correlations between the transverse position and longitudinal momentum of partons inside nucleon.

¹Richard P Feynman. Very high-energy collisions of hadrons. *Physical Review Letters* 23.24 (1969), p. 1415.

²Dieter Mueller et al. Wave Functions, Evolution Equations and Evolution Kernels from Light-Ray Operators of QCD. Fortschritte der Physik/Progress of Physics 42.2 (1994), pp. 101–141.

The Goal of This Study: Reconstruction of the Generalized Parton Distribution

- Consider the system of equations and constraints for GPD.
- Formulate the construction of GPD as an inverse problem.
- Use orthogonal polynomials such as
 - Chebeshev polynomials
 - Legendre polynomials

to discretize the equations and constraints.

- Treat the resulting ill-posed problem by sparse regularization.
- Solve the non-smooth optimization problem using the fixed-point proximity algorithm.

DVCS

Deeply Virtual Compton Scattering (DVCS)

In a nuclear physics experiment, high energy electron e is used to hit the quark h in the proton. It generates an outcoming electron e, a quark h and a high-energy photon γ . This can be described as^{3 4}

$$e(k) + h(P_1) \to e(k') + h(P_2) + \gamma(q_2).$$

- $\ \, {\rm 0} \ \, e-{\rm electron}, \ \, h-{\rm quark}, \ \, \gamma-{\rm photon}.$
- 2 k the four-momentum of the initial electron.
- **(3)** P_1 the four-momentum of the initial nucleon.
- **4** k' the four-momentum of the final electron.
- **(**) P_2 the four-momentum of the final nucleon.
- **(**) q_2 the four-momentum of the final photon.

Yuesheng Xu Old Dominion University, NorfolAI AND INVERSE PROBLEMS: SPARSE RECON

³Xiangdong Ji. Off-forward parton distributions. Journal of Physics G: Nuclear and Particle Physics 24.7 (1998), p. 1181.

⁴Xiangdong Ji. Gauge-invariant decomposition of nucleon spin. Physical Review Letters 78.4 (1997), p. 610.

DVCS

Figure 1: Scattering Figure⁵

$$e(k) + h(P_1) \to e(k') + h(P_2) + \gamma(q_2).$$

⁵Andrei V Belitsky, Dieter Mueller, and A Kirchner. Theory of deeply virtual Compton scattering on the nucleon. *Nuclear Physics B* 629.1-3 (2002), pp. 323–392.

Yuesheng Xu Old Dominion University, NorfolAI AND INVERSE PROBLEMS: SPARSE RECOM

DVCS

Crucial Physics Variables

- 2 $\Delta := P_2 P_1 = q_1 q_2$, overall four-momentum transfer.
- $\textcircled{O} Q^2:=-q_1^2=-(k-k')^2 \text{, the virtuality of the absorbed virtual photon.}$
- $\bigcirc x \in [-1,1]$, longitudinal momentum fraction carried by constituent parton.
- **③** $\xi := (P_1 P_2)^+ / (P_1 + P_2)^+ \in [-1, 1]$, longitudinal momentum fraction transferred to the parton.
- **6** $t := \Delta^2$, invariant quantity measuring four-momentum transfer.
- Suppose the interval of the invariant quantity t which we are interested is bounded. We can then use an affine transformation to convert the domain of t into the bounded interval (-1, 1).

Singular Integral Equations for GPDs

The GPD functions $[H, E, \tilde{H}, \tilde{E}]$ are determined by the singular integral equations from the Compton form factors (CFFs) $[\mathcal{H}, \mathcal{E}, \tilde{\mathcal{H}}, \tilde{\mathcal{E}}]$: For $\xi, t \in (-1, 1)$,

$$\begin{aligned} \mathcal{H}(\xi,t) &= \int_{-1}^{1} \left[\frac{1}{x-\xi} + \frac{1}{x+\xi} \right] H(x,\xi,t) \,\mathrm{d}x + i\pi [H(-\xi,\xi,t) - H(\xi,\xi,t)], \\ \mathcal{E}(\xi,t) &= \int_{-1}^{1} \left[\frac{1}{x-\xi} + \frac{1}{x+\xi} \right] E(x,\xi,t) \,\mathrm{d}x + i\pi [E(-\xi,\xi,t) - E(\xi,\xi,t)], \\ \tilde{\mathcal{H}}(\xi,t) &= \int_{-1}^{1} \left[\frac{1}{x-\xi} - \frac{1}{x+\xi} \right] \tilde{H}(x,\xi,t) \,\mathrm{d}x - i\pi [\tilde{H}(-\xi,\xi,t) + \tilde{H}(\xi,\xi,t)], \\ \tilde{\mathcal{E}}(\xi,t) &= \int_{-1}^{1} \left[\frac{1}{x-\xi} - \frac{1}{x+\xi} \right] \tilde{E}(x,\xi,t) \,\mathrm{d}x - i\pi [\tilde{E}(-\xi,\xi,t) + \tilde{E}(\xi,\xi,t)]. \end{aligned}$$

The CFFs $[\mathcal{H}, \mathcal{E}, \tilde{\mathcal{H}}, \tilde{\mathcal{E}}]$ are obtained from experiments⁶.

 $^{^{6}}$ Andrei V Belitsky, Dieter Mueller, and A Kirchner. Theory of deeply virtual Compton scattering on the nucleon. Nuclear Physics B 629.1-3 (2002), pp. 323–392.

Yuesheng Xu Old Dominion University, NorfolAI and Inverse Problems: Sparse Record

Twist-Two Quark GPDs

Let n denote the light-like vector and $P := P_1 + P_2$.

The twist-two quark GPDs are given by⁷

$$\langle P_2 | \hat{\psi}(-\kappa n) \gamma \cdot n\psi(\kappa n) | P_1 \rangle = \int_{-1}^{1} (h \cdot nH(x,\xi,t) + e \cdot nE(x,\xi,t)) e^{-ix\kappa(P \cdot n)} \, \mathrm{d}x,$$

$$\langle P_2 | \hat{\psi}(-\kappa n) \gamma \cdot n\gamma_5 \psi(\kappa n) | P_1 \rangle = \int_{-1}^{1} (\tilde{h} \cdot n\tilde{H}(x,\xi,t) + \tilde{e} \cdot n\tilde{E}(x,\xi,t)) e^{-ix\kappa(P \cdot n)} \, \mathrm{d}x.$$

⁷Andrei V Belitsky, Dieter Mueller, and A Kirchner. Theory of deeply virtual Compton scattering on the nucleon. Nuclear Physics B 629.1-3 (2002), pp. 323–392.

Yuesheng Xu Old Dominion University, NorfolAI AND INVERSE PROBLEMS: SPARSE RECOM

Equations

Reformulation of the Singular Integral Equations

We reformulate the singular equation in terms of the Cauchy singular kernel: For $\xi,t\in(-1,1)\text{,}$

$$\mathcal{H}(\xi,t) = \int_{-1}^{1} \frac{1}{x-\xi} \left[H(x,\xi,t) - H(-x,\xi,t) \right] dx + i\pi [H(-\xi,\xi,t) - H(\xi,\xi,t)],$$

$$\begin{aligned} \mathcal{E}(\xi,t) &= \int_{-1}^{1} \frac{1}{x-\xi} \left[E(x,\xi,t) - E(-x,\xi,t) \right] \,\mathrm{d}x + i\pi [E(-\xi,\xi,t) - E(\xi,\xi,t)], \\ \tilde{\mathcal{H}}(\xi,t) &= \int_{-1}^{1} \frac{1}{x-\xi} \left[\tilde{H}(x,\xi,t) + \tilde{H}(-x,\xi,t) \right] \,\mathrm{d}x - i\pi [\tilde{H}(-\xi,\xi,t) + \tilde{H}(\xi,\xi,t)], \\ \tilde{\mathcal{E}}(\xi,t) &= \int_{-1}^{1} \frac{1}{x-\xi} \left[\tilde{E}(x,\xi,t) + \tilde{E}(-x,\xi,t) \right] \,\mathrm{d}x - i\pi [\tilde{E}(-\xi,\xi,t) + \tilde{E}(\xi,\xi,t)]. \end{aligned}$$

Let q be the quark distribution, \tilde{q} the anti-quark distribution, Δq the quark helicity distribution and $\Delta \tilde{q}$ the anti-quark helicity distribution. We have the initial constraints

$$\begin{split} H(x,0,0) &= q(x), \quad 0 \leq x < 1, \\ \tilde{H}(x,0,0) &= \Delta q(x), \quad 0 \leq x < 1, \\ H(x,0,0) &= -\tilde{q}(-x), \quad -1 < x < 0, \\ \tilde{H}(x,0,0) &= \Delta q(-x), \quad -1 < x < 0. \end{split}$$

Constraints

Initial Constraints: An Illustration

Figure 2: Forward limit for $H(x,\xi,0)^8$

Yuesheng Xu Old Dominion University, NorfolAI AND INVERSE PROBLEMS: SPARSE RECOM

 $^{^8{\}rm K}$ Goeke, Maxim V Polyakov, and M Vanderhaeghen. Hard exclusive reactions and the structure of hadrons. arXiv preprint hep-ph/0106012 (2001).

Moment Constraints

For $\xi, t \in (-1, 1)$,

$$\int_{-1}^{1} x^{n-1} H(x,\xi,t) \, \mathrm{d}x = \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (2\xi)^{2k} A_{n,k}(t) + mod(n-1,2)(2\xi)^n C_n(t),$$

$$\int_{-1}^{1} x^{n-1} E(x,\xi,t) \, \mathrm{d}x = \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (2\xi)^{2k} B_{n,k}(t) - mod(n-1,2)(2\xi)^n C_n(t),$$

where $A_{n,k}, C_n, B_{n,k}$ are arbitrary functions.

Summary of the Mathematical Model of GPDs

Integral equations:

$$\mathcal{H}(\xi,t) = \int_{-1}^{1} \frac{1}{x-\xi} \left[H(x,\xi,t) - H(-x,\xi,t) \right] \, \mathrm{d}x - i\pi \left[H(\xi,\xi,t) - H(-\xi,\xi,t) \right], \quad \xi,t \in (-1,1), \tag{5.1}$$

$$\mathcal{E}(\xi,t) = \int_{-1}^{1} \frac{1}{x-\xi} \left[E(x,\xi,t) - E(-x,\xi,t) \right] \, \mathrm{d}x - i\pi \left[E(\xi,\xi,t) - E(-\xi,\xi,t) \right], \quad \xi,t \in (-1,1), \tag{5.2}$$

$$\tilde{\mathcal{H}}(\xi,t) = \int_{-1}^{1} \frac{1}{x-\xi} \left[\tilde{H}(x,\xi,t) + \tilde{H}(-x,\xi,t) \right] \, \mathrm{d}x - i\pi [\tilde{H}(\xi,\xi,t) + \tilde{H}(-\xi,\xi,t)], \quad \xi,t \in (-1,1),$$
(5.3)

$$\tilde{\mathcal{E}}(\xi,t) = \int_{-1}^{1} \frac{1}{x-\xi} \left[\tilde{E}(x,\xi,t) + \tilde{E}(-x,\xi,t) \right] \, \mathrm{d}x - i\pi [\tilde{E}(\xi,\xi,t) + \tilde{E}(-\xi,\xi,t)], \quad \xi,t \in (-1,1),$$
(5.4)

with constraints

$$H(x, 0, 0) = q(x), \quad \tilde{H}(x, 0, 0) = \Delta q(x), \qquad 0 \le x < 1$$
(5.5)

$$H(x,0,0) = -\tilde{q}(-x), \quad \tilde{H}(x,0,0) = \Delta q(-x), \quad -1 < x < 0$$
(5.6)

$$\int_{-1}^{1} x^{n-1} H(x,\xi,t) \, \mathrm{d}x = \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (2\xi)^{2k} A_{n,k}(t) + \mathrm{mod}(n-1,2)(2\xi)^n C_n(t),$$
(5.7)

$$\int_{-1}^{1} x^{n-1} E(x,\xi,t) \, \mathrm{d}x = \sum_{k=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (2\xi)^{2k} B_{n,k}(t) - \mathrm{mod}(n-1,2)(2\xi)^n C_n(t).$$
(5.8)

The Cauchy Singular Integral Operator and Chebyshev Polynomials

Let T_n and U_n , respectively, be the Chebyshev polynomials of order n, of the first and second kind. That is,

$$T_n(x) = \cos n\theta$$
, $U_n(x) = \frac{\sin(n+1)\theta}{\sin \theta}$, $\cos \theta = x$, $\theta \in (0, 2\pi)$.

 T_n and U_n are connected by the Cauchy Singular Integral Operator⁹:

$$\int_{-1}^{1} \frac{U_n(t)\sqrt{1-t^2}}{t-x} dt = -\pi T_{n+1}(x), \quad x \in (-1,1)$$
$$\int_{-1}^{1} \frac{T_n(t)}{(t-x)\sqrt{1-t^2}} dt = \begin{cases} 0, & n=0, \\ \pi U_{n-1}(x), & n \ge 1, \end{cases} \quad x \in (-1,1).$$

Yuesheng Xu Old Dominion University, NorfolAI and Inverse Problems: Sparse Recor

⁹David Elliott. Orthogonal polynomials associated with singular integral equations having a Cauchy kernel. *SIAM Journal on Mathematical Analysis* 13.6 (1982), pp. 1041–1052.

The Cauchy Singular Integral Operator and Legendre Polynomials

• The Legendre polynomials P_n and the second kind Legendre function Q_n are connected by the Cauchy singular integral operator in the way:

$$\int_{-1}^{1} \frac{P_n(t)}{t-x} \, \mathrm{d}t = -2Q_n(x), \quad x \in (-1,1).$$

• The connection of the Cauchy singular integral operator with orthogonal polynomials motivates us to use orthogonal polynomials for approximation of GPDs.

Approximate Subspaces of [H, E]

Let
$$I_n := \left\{2i : i = 0, 1, \dots, \left\lfloor \frac{n-1}{2} \right\rfloor\right\}$$
, $V_n := \operatorname{span}\{P_k : k \in I_n\}$.
The moment constraints (5.7)-(5.8) are equivalent to that for $\xi, t \in (-1, 1)$,

$$\int_{-1}^{1} x^{n-1} H(x,\xi,t) dx \in V_n, \quad n = 1, 2, \dots$$

$$\int_{-1}^{1} x^{n-1} E(x,\xi,t) dx \in V_n, \quad n = 1, 2, \dots$$

$$\int_{-1}^{1} x^{n-1} (H(x,\xi,t) + E(x,\xi,t)) dx \in V_{n-1}, \quad \text{if } \text{mod}(n,2) = 0.$$
(7.3)

Representation of [H, E]

For $x, \xi, t \in (-1, 1)$, define

 $\Psi_{j,i,l}(x,\xi,t):=\omega(x)P_j(\xi)W_i(x)P_l(t),$

where $\{W_i\}$ is an orthogonal basis for $L^2([-1,1],\omega)$, and let

$$H(x,\xi,t) := \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} \alpha_{j,i,l} \Psi_{j,i,l}(x,\xi,t),$$
(7.4)

$$E(x,\xi,t) := \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} \beta_{j,i,l} \Psi_{j,i,l}(x,\xi,t).$$
(7.5)

Lemma 1

The following statements are equivalent: (1) Equation (7.1) holds. (2) $\sum_{i=0}^{\infty} G_{n,i}\alpha_{j,i,l} = 0, \text{ for all } j \in \mathbb{N}/I_n, l, n, \quad (7.6)$ where $G_{n,i} := \int_{-1}^{1} \omega(x)x^{n-1}W_i(x)dx.$ (3) For odd $j, \alpha_{j,i,l} = 0, i \ge 0$; for even $j \ge 2, \alpha_{j,i,l} = 0, i \le j-2$.

Proposition 1

If H, E have the form like (7.4) (7.5) respectively, then equations (5.7) and (5.8) are equivalent to

$$\begin{split} H(x,\xi,t) &= \sum_{j=1}^{\infty} \sum_{i=2j-1}^{\infty} \sum_{l=0}^{\infty} \alpha_{2j,i,l} \Psi_{2j,i,l}(x,\xi,t) + \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} \alpha_{0,i,l} \Psi_{0,i,l}(x,\xi,t), \\ E(x,\xi,t) &= \sum_{j=1}^{\infty} \sum_{i=2j-1}^{\infty} \sum_{l=0}^{\infty} \beta_{2j,i,l} \Psi_{2j,i,l}(x,\xi,t) + \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} \beta_{0,i,l} \Psi_{0,i,l}(x,\xi,t), \\ \text{for } x,\xi,t \in (-1,1), \text{ and} \end{split}$$

$$\alpha_{n,n-1,l} + \beta_{n,n-1,l} = 0, \text{ for all } n \ge 2, \mod(n,2) = 0.$$
 (7.7)

1

According to Proposition 1, both H and E are in

$$\mathbb{X} := \left\{ f : f(x,\xi,t) := \sum_{j=1}^{\infty} \sum_{i=2j-1}^{\infty} \sum_{l=0}^{\infty} \gamma_{2j,i,l} \Psi_{2j,i,l}(x,\xi,t), + \sum_{i=0}^{\infty} \sum_{l=0}^{\infty} \gamma_{0,i,l} \Psi_{0,i,l}(x,\xi,t), f \in L^{2}(\Omega) \right\},$$

where $\Omega=(-1,1)^3.$ This motivates us to choose the approximation subspace for [H,E] as

$$\mathbb{X}_{N} := \left\{ f: f(x,\xi,t) := \sum_{j=1}^{N/2} \sum_{i=2j-1}^{2j+N-1} \sum_{l=0}^{N} \gamma_{2j,i,l} \Psi_{2j,i,l}(x,\xi,t) + \sum_{i=0}^{N} \sum_{l=0}^{N} \gamma_{0,i,l} \Psi_{0,i,l}(x,\xi,t), f \in L^{2}(\Omega) \right\}, \text{ for } \operatorname{mod}(N,2) = 0.$$

Clearly, $s_N := \dim \mathbb{X}_N = (N+1)^2(1+0.5N)$. We use $\{\Phi_j : j \in \mathbb{N}_{s_N}\}$ to denote a basis of \mathbb{X}_N .

Discretization of the Singular Integral Equations

We use a collocation method¹⁰ to discretize the equations. Comparing the real part of (5.1) and (5.2) yields, respectively,

$$\mathcal{R}e\,\mathcal{H}(\xi,t) = \int_{-1}^{1} \frac{1}{x-\xi} \left[H(x,\xi,t) - H(-x,\xi,t) \right] \,\mathrm{d}x, \ \xi,t \in (-1,1)$$
(8.1)

$$\mathcal{R}e\,\mathcal{E}(\xi,t) = \int_{-1}^{1} \frac{1}{x-\xi} \left[E(x,\xi,t) - E(-x,\xi,t) \right] \,\mathrm{d}x, \ \xi,t \in (-1,1).$$
(8.2)

Since equations (8.1) and (8.2) have a similar form, we consider a unified equation below

$$f(\xi,t) = \int_{-1}^{1} \frac{1}{x-\xi} (u(x,\xi,t) - u(-x,\xi,t)) \,\mathrm{d}x, \tag{8.3}$$

where $u \in \mathbb{X}$. For all $g \in \mathbb{X}$, define operator \mathcal{K} by

$$(\mathcal{K}g)(\xi,t) := \int_{-1}^{1} \frac{1}{x-\xi} (g(x,\xi,t) - g(-x,\xi,t)) \,\mathrm{d}x.$$

Equation (8.3) becomes

$$\mathcal{K}u = f.$$

¹⁰Zhongying Chen, Charles A Micchelli, and Yuesheng Xu. Multiscale methods for Fredholm integral equations. Vol. 28. Cambridge University Press, 2015.

Yuesheng Xu Old Dominion University, NorfolAI and INVERSE PROBLEMS: SPARSE RECON

A Collocation Scheme

Define $\mathbb{Y} := \mathcal{K}\mathbb{X}$, $\mathbb{Y}_N := \mathcal{K}\mathbb{X}_N$, $\mathbb{X}'_N := \operatorname{Null}(\mathcal{K})^{\perp} \cap \mathbb{X}_N$, where $\operatorname{Null}(\mathcal{K})$ denotes the null space of \mathcal{K} . Then $\mathcal{K}|_{\mathbb{X}'_N}$ is bijective from \mathbb{X}'_N onto \mathbb{Y}_N . Let $d_N := \dim \mathbb{X}'_N$.

The collocation scheme for equation (8.3) is to find $u_N \in \mathbb{X}'_N$ such that

$$\int_{-1}^{1} \frac{1}{x - \xi_j} (u_N(x, \xi_j, t_j) - u_N(-x, \xi_j, t_j)) \, \mathrm{d}x = f(\xi_j, t_j), \text{ for all } j \in \mathbb{N}_m,$$
(8.4)

where $\{(\xi_j, t_j) : j \in \mathbb{N}_m\}$ are distinct points. Let $u_N := \sum_{j \in \mathbb{N}_{d_N}} u_j \phi_j$, where $\{\phi_j : j \in \mathbb{N}_{d_N}\}$ is a basis for \mathbb{X}'_N . Define $\mathbf{K} := [(\mathcal{K}\phi_j)(\xi_i, t_i) : i \in \mathbb{N}_m, j \in \mathbb{N}_{d_N}],$ $\mathbf{u} := [u_j : j \in \mathbb{N}_{d_N}], \quad \mathbf{f} := [f(\xi_i, t_i) : i \in \mathbb{N}_m].$

Equation (8.4) can be written in the matrix form

$$\mathbf{K}\mathbf{u} = \mathbf{f}.\tag{8.5}$$

Changes of Bases

We choose a basis $\{\phi_{d_N+1}, \phi_{d_N+2}, \dots, \phi_{s_N}\}$ for $\operatorname{Null}(\mathcal{K}) \cap \mathbb{X}_N$. Then, $\{\phi_i : i \in \mathbb{N}_{s_N}\}$ forms a basis for \mathbb{X}_N . We wish to change to the basis $\{\Phi_i : i \in \mathbb{N}_{s_N}\}$. There is an invertible matrix **B** such that

$$\begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_{s_N} \end{bmatrix} = \mathbf{B} \begin{bmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \Phi_{s_N} \end{bmatrix}$$

Let $\hat{\mathbf{u}} := \mathbf{B}\mathbf{u}$. Equation (8.5) becomes

$$\hat{\mathbf{K}}\hat{\mathbf{u}} = \mathbf{f},\tag{8.6}$$

where

$$\hat{\mathbf{K}} := [(\mathcal{K}\Phi_j)(\xi_i, t_i) : i \in \mathbb{N}_m, j \in \mathbb{N}_{s_N}],$$

and $\hat{\mathbf{u}}$ is the coefficients of u under the basis $\{\Phi_i : i \in \mathbb{N}_{s_N}\}$.

Equations for [H, E]: the Real Part

Suppose we have already given data

 $\{\mathcal{H}(\xi_i, t_i) : i \in \mathbb{N}_m\}, \{\mathcal{E}(\xi_i^*, t_i^*) : i \in \mathbb{N}_p\}, \{H(x_i, 0, 0) : i = \mathbb{N}_k\}.$

We choose m = p = k. The values $\{x_i, x_i^*, \xi_i, \xi_i^*, t_i : i = 1, 2, ..., m\}$ are sampled from the uniform distribution in (0, 1) independently. First, we consider the real part of equations (5.1) and (5.2). H and E satisfy equations in the form (8.3). Substituting $\mathcal{R}e \mathcal{H}$ for f and H for u in (8.3), we have the following systems similar to (8.6):

$$\hat{\mathbf{K}}^H \hat{\mathbf{u}}^H = \mathbf{f}^H, \tag{8.7}$$

$$\hat{\mathbf{K}}^E \hat{\mathbf{u}}^E = \mathbf{f}^E, \tag{8.8}$$

where $\hat{\mathbf{K}}^{H}, \hat{\mathbf{K}}^{E}, \mathbf{f}^{H}, \mathbf{f}^{E}, \hat{\mathbf{u}}^{H}, \hat{\mathbf{u}}^{E}$ are defined in the same way as those in (8.6).

Equations for [H, E]: the Imaginary Part

Considering the imaginary part of equations (5.1) and (5.2) yields

$$\mathbf{G}^{H}\hat{\mathbf{u}}^{H} = \mathbf{h}^{H}, \quad \mathbf{G}^{E}\hat{\mathbf{u}}^{E} = \mathbf{h}^{E}, \tag{8.9}$$

where

$$\begin{split} \mathbf{h}^{H} &:= [-\mathcal{I}m \,\mathcal{H}(\xi_{i},t_{i})/\pi : i \in \mathbb{N}_{m}], \ \mathbf{h}^{E} := [-\mathcal{I}m \,\mathcal{E}(\xi_{i}^{*},t_{i}^{*})/\pi : i \in \mathbb{N}_{p}], \\ \mathbf{G}^{H} &:= [(\mathcal{W}\Phi_{j})(\xi_{i},t_{i}) : i \in \mathbb{N}_{m}, j \in \mathbb{N}_{s_{N}}], \\ \mathbf{G}^{E} &:= [(\mathcal{W}\Phi_{j})(\xi_{i}^{*},t_{i}^{*}) : i \in \mathbb{N}_{p}, j \in \mathbb{N}_{s_{N}}], \\ (\mathcal{W}u)(\xi,t) &:= u(\xi,\xi,t) - u(-\xi,\xi,t), \text{ for any } u \in \mathbb{X}. \end{split}$$

Matrix Form of the Initial Constraints

The initial constraints described in (5.5) and (5.6) are translated to the matrix form

$$\mathbf{F}\hat{\mathbf{u}}^{H} = \mathbf{g},\tag{8.10}$$

where

$$\mathbf{F} := [\Psi_j(x_i, 0, 0) : i \in \mathbb{N}_k, j \in \mathbb{N}_{s_N}],$$
$$\mathbf{g} := [H(x_i, 0, 0) : i = \mathbb{N}_k].$$

The Discrete System for GPD

Let

$$\mathbf{G} := \begin{bmatrix} \operatorname{diag}(\hat{\mathbf{K}}^{H}, \hat{\mathbf{K}}^{E}) \\ \operatorname{diag}(\mathbf{G}^{H}, \mathbf{G}^{E}) \\ \mathbf{F}, \mathbf{0}_{k \times s_{N}} \end{bmatrix}, \quad \mathbf{N} := \begin{bmatrix} \mathbf{f}^{H} \\ \mathbf{f}^{E} \\ \mathbf{h}^{H} \\ \mathbf{h}^{E} \\ \mathbf{g} \end{bmatrix}, \quad \hat{\mathbf{u}} := \begin{bmatrix} \hat{\mathbf{u}}^{H} \\ \hat{\mathbf{u}}^{E} \end{bmatrix},$$

where $\mathbf{0}_{k \times s_N}$ is a zero matrix whose dimension is $k \times s_N$.

• GPD can be solved by the discrete system

$$\mathbf{G}\hat{\mathbf{u}} = \mathbf{N}.\tag{9.1}$$

Moreover, $\hat{\mathbf{u}}^E$ and $\hat{\mathbf{u}}^H$ must satisfy the relationship (7.7).

- System (9.1) is ill-posed. It requires regularization.
- Regularization uses prior information on a potential solution to transfer the ill-posed system to a well-posed problem.

L_2 Regularization

Under the hypothesis that the true solution has certain minimum energy, we propose the L_2 regularization:

$$\min_{\hat{\mathbf{u}}} \left\{ \frac{1}{2} \| \mathbf{G} \hat{\mathbf{u}} - \mathbf{N} \|_2^2 + \lambda \| \hat{\mathbf{u}} \|_2 \right\},$$
(9.2)

where $\lambda > 0$ is a regularization parameter.

The L_2 regularization problem (9.2) has a closed-form solution

$$\hat{\mathbf{u}} = (\mathbf{G}^T \mathbf{G} + \lambda \mathcal{I})^{-1} (\mathbf{G}^T \mathbf{N}).$$

If the solution of (9.2) is given by $\hat{\mathbf{u}} = \begin{bmatrix} \hat{\mathbf{u}}^H \\ \hat{\mathbf{u}}^E \end{bmatrix}$ with $\hat{\mathbf{u}}^H := [\hat{u}^H_1, \dots, \hat{u}^H_{s_N}]^T$ and $\hat{\mathbf{u}}^E := [\hat{u}^E_1, \dots, \hat{u}^E_{s_N}]^T$, then

$$H_N := \sum_{j \in \mathbb{N}_{s_N}} \hat{u}_j^H \Phi_j, \quad E_N := \sum_{j \in \mathbb{N}_{s_N}} \hat{u}_j^E \Phi_j.$$

give solutions for H, E in \mathbb{X}_N .

Yuesheng Xu Old Dominion University, NorfolAI AND INVERSE PROBLEMS: SPARSE RECOM

Sparse Solutions

- Certain energy concentration in physics may require sparse representation of solutions.
- Sparse solutions are desirable also due to their efficiency in computation.
- The L₁-norm promotes sparsity. It helps us concentrate energy in a few directions.
- The L₂-norm does not promote sparsity. It spreads energy in all directions.

The L_2 -Norm vs the L_1 -Norm

L_1 Regularization

 \bullet Aiming at reconstructing sparse solutions, we propose the L_1 regularization $^{11}\ ^{12}$

$$\min_{\hat{\mathbf{u}}} \left\{ \frac{1}{2} \| \mathbf{G} \hat{\mathbf{u}} - \mathbf{N} \|_2^2 + \lambda \| \hat{\mathbf{u}} \|_1 \right\},$$
(9.3)

where $\lambda > 0$ is a regularization parameter.

- The L_1 regularization leads to non-smooth minimization problems.
- Since their objective functions are not differentiable, gradient-type algorithms are not applicable. Solving non-smooth minimization problems requires special efforts.

¹¹Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections: Universal encoding strategies? *IEEE transactions on information theory* 52.12 (2006), pp. 5406–5425.

¹²David L Donoho. For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences 59.6 (2006), pp. 797–829.

Fixed-Point Proximity Algorithm I

Following the work¹³, we propose to use a fixed-point proximity algorithm¹⁴ to solve (9.3).

- We convert the minimization problem (9.3) to an equivalent fixed-point equation defined via the proximity operator of the l_1 -norm $\|\cdot\|_1$.
- The fixed-point equation can be solved by the Picard iteration scheme with convergence guaranteed.
- \bullet The proximity operator of $\|\cdot\|_1$ has a closed form

$$\operatorname{prox}_{\lambda \|\cdot\|_1}(b) = \max\left\{ |b| - \lambda, 0 \right\} \operatorname{sign}(b),$$

which leads to fast computation.

¹³Charles A Micchelli, Lixin Shen, and Yuesheng Xu. Proximity algorithms for image models: denoising. Inverse Problems 27.4 (2011), p. 045009.

¹⁴Qia Li et al. Multi-step fixed-point proximity algorithms for solving a class of optimization problems arising from image processing. Advances in Computational Mathematics 41.2 (2015), pp. 387–422.

Fixed-Point Proximity Algorithm II

- Choose initial point $\mathbf{\hat{u}}^0$ and $\mathbf{y}^0.$
- Conduct the iteration:

$$\begin{cases} \hat{\mathbf{u}}^{k+1} = \hat{\mathbf{u}}^k - \beta(\nabla F(\hat{\mathbf{u}}^k) + \mathbf{y}^k), \\ \mathbf{y}^{k+1} = \rho(\mathcal{I} - \operatorname{prox}_{\frac{\lambda}{\rho} \|\cdot\|_1})(\frac{1}{\rho}\mathbf{y}^k + (\hat{\mathbf{u}}^{k+1} - \hat{\mathbf{u}}^k)) \end{cases}$$

where β,ρ are positive parameters, ${\mathcal I}$ is identity matrix,

$$\nabla F(\hat{\mathbf{u}}) = \mathbf{G}^T (\mathbf{G}\hat{\mathbf{u}} - \mathbf{N}).$$

- Stop the iteration when the relative error $\frac{\|\hat{\mathbf{u}}^{k+1}-\hat{\mathbf{u}}^k\|_2}{\|\hat{\mathbf{u}}^{k+1}\|_2}$ is smaller than a given number, and output $\hat{\mathbf{u}}^{k+1}$ as an approximate solution.
- \bullet When ρ is chosen in certain range, this iteration scheme converges linearly.

Simulation Data and Settings

- The objective of the numerical experiments is to reconstruct the GPD functions *H* and *E* by solving equations (5.1)-(5.8) via our proposed method.
- We use simulation data to test our method.
 - Choose testing functions H and E that satisfy the moment constraints.
 - Sample the values $\{x_i, x_i^*, \xi_i, \xi_i^*, t_i : i = 1, 2, \dots, 100\}$ uniformly from (0, 1).
 - Compute

 $\mathcal{H}(\xi_i, t_i), \mathcal{E}(\xi_i^*, t_i^*), H(x_i, 0, 0), \quad i = 1, 2, \dots, 100.$

and add gaussian noise $N(0, 0.01^2)$ to them.

- Construct approximate space X_N .
- Solve (9.3) to obtain approximate functions of H_N and E_N by using the fixed-point proximity algorithm.

Experiment 1: Non-Sparse H and E

We choose functions H and E in \mathbb{X}'_8 , and use \mathbb{X}_6 as an approximation space. The coefficients of H and E are showed as follows:

Yuesheng Xu Old Dominion University, NorfolAI and INVERSE PROBLEMS: SPARSE RECON

Experiment 1: Numerical Results

- The best regularization parameter for both the L_1 and L_2 models is 0.02.
- When the absolute value of a coefficient is less than 0.01, we let it be zero.
- The relative error is defined by $\frac{\|H-H_N\|_2^2}{\|H\|_2^2}$ for H and H_N and likewise for E and E_N .

Models	relative errors		# of nonzero terms	
	Н	E	Н	E
The L_1 model	0.356	0.337	47	54
The L_2 model	0.235	0.239	78	83

Experiment 1: Coefficients of the Reconstructed H_N

Experiment 1: Coefficients of the Reconstructed E_N

Experiment 1: The L_1 model, x-Slices

Experiment 1: The L_1 model, t-Slices

Experiment 1: The L_1 model, ξ -Slices

Experiment 1: The L_2 model, x-Slices

Experiment 1: The L_2 model, ξ -Slices

Experiment 1: The L_2 model, *t*-Slices

Experiment 2: Sparse H and E in \mathbb{X}_6

Choose

 $H(x,\xi,t) = P_4(\xi)P_5(x)P_2(t) - 2P_2(\xi)P_1(x)P_2(t), \ x,\xi,t \in (0,1),$

 $E(x,\xi,t) = -P_0(\xi)P_3(x)P_2(t) + 2P_2(\xi)P_1(x)P_2(t), \ x,\xi,t \in (0,1).$

- Choose \mathbb{X}_6 as the approximation space.
- Best regularization parameters for the L_1 and L_2 models is respectively 0.012 and 0.05.

Models	relative	e errors	# of nonzero terms		
	Н	E	Н	E	
$L_1 model$	0.0015	0.0017	2	2	
$L_2 model$	0.377	0.363	93	71	

Experiment 2: Coefficients of H_N

Experiment 2: Coefficients of E_N

Experiment 2: the L_1 -Model, x-Slices

Experiment 2: the L_1 -Model, ξ -Slices

Experiment 2: the L_1 -Model, t-Slices

Experiment 2: the L_2 -Model, x-Slices

Experiment 2: the L_2 -Model, ξ -Slices

Experiment 2: the L_2 -Model, t-Slices

Experiment 3: H and E from X

• We choose H and E from X:

$$\begin{split} H(x,\xi,t) &= P_4(\xi) U_7(x) P_2(t) \sqrt{1-x^2} - 2 P_2(\xi) P_1(x) P_2(t), \\ E(x,\xi,t) &= -P_0(\xi) U_3(x) P_2(t) \sqrt{1-x^2} + 2 P_2(\xi) P_1(x) P_2(t), \\ \text{where } x,\xi,t \in (0,1) \text{, and } U_n \text{ denotes the second kind Chebyshev polynomial of order } n. \end{split}$$

• Clearly, H and E are not in \mathbb{X}_N , for all $n = 2, 4, \ldots$

Experiment 3: Settings and Data

- We sample $\{x_i, x_i^*, \xi_i, \xi_i^*, t_i : i = 1, 2, ..., 150\}$ uniformly from (0, 1).
- We then add gaussian noise $N(0, 0.01^2)$ to $\{(\mathcal{H}(\xi_i, t_i), \mathcal{E}(\xi_i^*, t_i^*), H(x_i, 0, 0)) : i = 1, 2, \dots, 150\}$. We let \mathcal{D} to denote this dataset.
- \bullet We choose 100 data points in ${\cal D}$ as our training set, and use the remaining 50 data points in ${\cal D}$

$$\left\{ \left(\hat{\mathcal{H}}(\xi_i, t_i), \hat{\mathcal{E}}(\xi_i^*, t_i^*), \hat{H}(x_i, 0, 0) \right) : i = 101, 102, \dots, 150 \right\},\$$

as the testing set.

- We reconstruct H_6 and E_6 in \mathbb{X}_6 using our method.
- For evaluation, we use the test relative error defined by

$$\frac{\sum_{i=101}^{150} \left(|\hat{\mathcal{H}}(\xi_i, t_i) - \mathcal{H}_6(\xi_i, t_i)|^2 + |\hat{H}(x_i, 0, 0) - H_6(x_i, 0, 0)|^2 \right)}{\sum_{i=101}^{150} \left(|\hat{\mathcal{H}}(\xi_i, t_i)|^2 + |\hat{H}(x_i, 0, 0)|^2 \right)},$$

where \mathcal{H}_6 is obtained by substituting H_6 into (5.1).

Experiment 3: Numerical Results

The best regularization parameters for both the L_1 and L_2 models are 0.01.

Models	test relative errors		# of nonzero terms	
	H	E	H	E
$L_1 model$	0.053	0.015	37	16
$L_2 model$	0.079	0.037	73	65

Experiment 3: Coefficients of H_N

Experiment 3: Coefficients of E_N

Experiment 3: the L_1 Model, x-Slices

Experiment 3: the L_1 Model, ξ -Slices

Experiment 3: the L_1 Model, *t*-Slices

Experiment 3: the L_2 Model, x-Slices

Experiment 3: the L_2 Model, ξ -Slices

Experiment 3: the L_2 Model, *t*-Slices

Future Work

- We shall consider other constraints in the GPD system, in addition to the moment and initial constraints.
- We shall study the noise distribution of real nuclear physics data and use it to formulate appropriate fidelity term.
- We shall investigate prior information of the solution of GPD and use it to choose appropriate regularization terms.
- We shall implement our proposed method for real nuclear physics data.

Thanks!