

Artificial Intelligence to Map the Proton Structure

Juan Rojo

VU Amsterdam & Theory group, Nikhef

AI for Nuclear Physics Workshop Bayesian Inference for Quantum Correlators workgroup JLAB, Wednesday 4/3/2020

NNPDF in a nutshell

The NNPDF (proton) timeline

Solution NNPDF2.3: first PDF set with LHC data. LO set used in Monash 2013 Tune of Pythia8. Default (internal) PDF sets in MadGraph_aMC@NLO

NNPDF2.3QED: model-independent determination of the photon PDF

NNPDF3.1: most LHC Run I data included (several new processes: ttbar differential, high-mass Drell-Yan, Z pT spectra, ...). NNLO fit markedly superior than NLO one

NNPDF3.1QED: LuxQED prescription for photon PDF

NNPDF3.1smallx: BFKL-improved PDFs for small-x physics (HERA, forward physics)

NNPDF3.1TH: first set of parton distributions with theory (MHO) uncertainties

NNPDF4.0: work on progress, expected release in summer 2020

04/13

NNPDF4.0: new experimental data

Many new LHC Run I & II data included

Differential Drell-Yan cross-sections at 13 TeV

Z and W pT spectra at 8 and 13 TeV New

₩+c at 8 and 13 TeV (strangeness)

Dijet production at 7 and 8 TeV New

Top-quark pair production at 8 and 13 TeV

Single-top cross-sections New

Dijet production

- Added several new measurements of inclusive jet and dijet production at 7 and 8 TeV, including the CMS 8 TeV 3D dijet distributions, using NNLO QCD theory
- Explore sensitivity to gluon PDF and robustness wrt experimental correlation models

NNPDF3.1 NNLO_{OCD} (Q = 100 GeV)

The n3fit project

Complete restructure of the NNPDF fitting framework: enhanced modularity that dramatically improves its flexibility, in particular to exploit **external ML libraries** *eg* Keras, TensorFlow, ...

Cruz-Martinez, Carrazza, arXiv:1907.05075

The n3fit project

Complete restructure of the NNPDF fitting framework: enhanced modularity that dramatically improves its flexibility, in particular to exploit **external ML libraries** *eg* Keras, TensorFlow, ...

Cruz-Martinez, Carrazza, arXiv:1907.05075

NNPDF4.0: methodology improvements

NNPDF3.1

NNPDF4.0

Random numbers	main seed, closure filter seed	multi seed		
Data management	libnnpdf	same as nnfit		
Neural net	fixed architecture, per flavour	single net, flexible architecture		
Preprocessing	random fixed	fitted in range		
Integration	a posteriori per iteration	buildin in the model		
Optimizer	genetic optimizer	gradient descent SGD, ADAM, RMSmom, .		
Stopping	lookback	patience		
Positivity	penalty and threshold	dynamic penalty, PDF must fulfill positi		
Postfit	4-sigma chi2 and arclenght	same as nnfit		
Fine tuning	manual	semi-automatic		
Model selection	closure test	closure test, hyper optimization		

NNPDF4.0: methodology improvements

NNPDF3.1

- $\rightarrow\,$ Genetic Algorithm optimizer
- \rightarrow One network per flavour
- → Sum rules imposed outside of optimization
- → Preprocessing fixed per each of the replicas
- \rightarrow C++ monolithic codebase
- → Fit parameters manually chosen (i.e., manual optimization of hyperparameter)
- \rightarrow In-house ML framework

NNPDF4.0

- $\rightarrow\,$ Gradient Descent optimization
- \rightarrow One network for all flavours
- \rightarrow Sum rules imposed during optimization
- → Preprocessing fitted within replicas
- $\rightarrow\,$ Python object oriented codebase
- \rightarrow Fit parameters chosen automatically (hyperparameter scan)
- \rightarrow Complete freedom for choosing the ML library: i.e., tensorflow.

complete freedom to change ML framework, optimisers, ...

Hyper optimisation

In most Machine Learning applications, the model has several parameters which are typically **adjusted by hand** (trial and error) rather than algorithmically:

Solution Press, Solution And Solution Press, Solution And Solution Press, Press,

Choice of minimiser (which of the Gradient Descent variants?)

Learning rate, momentum, memory, size of mini-batches,

Regularisation parameters, stopping, dropout rate, patience, …

one can avoid the need of subjective choice by means of **an hyperoptimisation procedure**, where all model and training/stopping parameters are determined algorithmically

Such hyperoptimisation requires introducing a **reward function** to grade the model. Note that this is different from the **cost function:** the latter is optimised separately model by model (e.g. for each NN architecture) while the former compares between all optimised models

e.g. cost function
$$\, C = E_{
m tr} \,$$

reward function
$$R = \frac{1}{2} \left(E_{\text{val}} + E_{\text{test}} \right)$$

Juan Rojo

(

Hyper optimisation

Hyper optimisation

In a hyperparameter scan one can compare the performance of hundreds or thousands of parameter combinations

eward function

- Some choices are discrete (type of minimiser, # of layers) others are continuous (learning rate)
- One can also visualise which choices are more crucial and which ones less important
- The violin plots are the KDEreconstructed probability distributions for the hyperparameters

Juan Rojo

Towards NNPDF4.0

- Per-replica training time reduced by factor O(30) thanks to SGD minimisers in TensorFlow
- Smoother individual replicas, higher fraction of replicas satisfying quality requirements
- Reduction in PDF uncertainties in data region (for same dataset) thanks to improved methodology

	n3fit	NNPDF 3.1		
χ^2	1.149	1.158		
Avg time	70 minutes	35 hours		
Memory	16 Gb	5 Gb		
Good replicas	95%	70%		

Juan Rojo

Artificial Intelligence for Nuclear Physics workshop

AI & forecasting tests

- Crucial aspect of ML methods, beyond describing existing data, is to generalise to future data
- Train PDFs on pre-HERA and pre-LHC data, and then forecast for all data available now
- Include in this exercise PDF errors in the x² definition

		n3fit pre-hera		nnfit pre-hera	
		ndata	χ²/ndata	ndata	χ²/ndata
HERACOMB	Total	1145	1.135	1145	1.089
ATLAS	Total	360	0.9744	360	0.9443
CMS	Total	409	0.9699	409	0.9200
LHCb	Total	85	1.195	85	1.008
Total	Total	2215	1.055	2215	1.013

- Fraining PDFs on only old fixed-target DIS and DY datasets, the extrapolation to ``future" data is fully satisfactory: χ²new =1
- Test succesful both with 3.1 and 4.0 methodologies: in both cases the PDF uncertainties are faithfully estimated, with 4.0 being more accurate than 3.1

NNPDF, in preparation

Artificial Intelligence for Nuclear Physics workshop

Evolutionary Keras

NNPDF until 3.1 based on evolutionary-type minimisers (Genetic Algorithms, CMA-ES)

From NNPDF4.0 (also in nuclear fits) Gradient-Descent optimisers adopted instead

Since Keras library did not include evolutionary strategies, a new library, evolutionary_keras, was developed to run variants of NNPDF4.0 with evolutionary algorithms

Cruz-Martinez, Carrazza, Stegeman, arXiv:2002.06587

from evolutionary_keras.models import EvolModel
my_model = EvolModel(input_layer, output_layer)

```
from evolutionary_keras.optimizers import NGA
my_nga = NGA(population_size = 42, mutation_rate = 0.2)
my_model.compile(optimizer = my_nga, loss = 'mean_squared_error')
my_model.fit(x = input_data, y = output_data, epochs = 10)
```

- Demonstrates extreme flexibility of n3fit code: varying minimiser trivial
- NNPDF4.0 fits using Evolutionary Keras library in agreement with NNPDF3.1 for same input dataset

GANs for PDF fits

Even with all the n3fit speedups, producing large samples of PDF replicas still time-consuming

Solution: produce new PDF fit replicas using Generative Adversarial Networks

While no additional information is being added, such method can be applied to many cases with a very large N_{rep} is beneficial, such as Bayesian reweighting studies

Juan Rojo

16

Artificial Intelligence for Nuclear Physics workshop

Summary and outlook

The accurate determination of the **quark and gluon structure of the proton** is an essential ingredient for **LHC phenomenology** and **beyond**

- Working towards a next major release, NNPDF4.0, with significant improvements from the theoretical, data, and methodological aspects
- Thanks to n3fit code, achieved complete modularity of the NNPDF fitting framework, allowing us to exploit external ML libraries such as TensorFlow & vary optimisers
- Methodology validated systematically on closure test and historical (forecasting) test: both 3.1 and 4.0 methodologies succesful, with 4.0 resulting in smaller PDF uncertainties
- The NNPDF methodology also used to produce nuclear PDF fits, using an independent fitting framework based on TensorFlow with SGD minimisation

Jake's talk tomorrow!

Juan Rojo