Generalized parton distributions: Overview

C. Weiss (JLab), A.I. for Nuclear Physics Workshop, JLab, 4-6 Mar 2020

This overview: Focus on formal properties, information content

Respect physical complexity and limitations

- Definition and properties
- Interpretation and interest

Nucleon spatial structure, quark/gluon imaging QCD energy-momentum tensor: Angular momentum, forces

Information and construction

Limiting cases: Parton densities, form factors Hard exclusive processes: Analysis methods

Physical regimes

Small x: Gluons, singlet quarks, radiation Large x: Nonsinglet quarks, spin/flavor, transversity

• AI example: DVCS analysis using Neural Networks

GPDs: Definition and properties

- $\langle N' | \, ar{\psi}(-z) \, \Gamma \, \psi(z) \, | N
 angle_{z^2=0}$
 - \rightarrow GPDs (x, ξ, t)
- Partonic interpretation

- Transition matrix elements of twist-2 operators Müller et al 94+, Ji 96, Radyushkin 96
 Unify concepts of parton density and form factor Quark/gluon and nucleon helicity components
 Renormalization and scale evolution DGLAP–ERBL
 - "Simple operator, complex matrix element"

- $|x| > \xi$: Amplitude for nucleon to emit/absorb quark cf. parton density $|x| < \xi$: Amplitude to emit quark-antiquark pair cf. distribution amplitude
- Moments = form factors of local twist-2 spin-n operators

 $\int_{-1}^{1} dx \ x^{n-1} \ \mathsf{GPD}(x,\xi,t) = \mathsf{Polynomial of deg } n \text{ in } \xi \qquad \text{``2D array of moments''}$

2

GPDs: Interpretation and interest

• Spatial distribution of quarks/gluons in nucleon Burkardt 00+, Diehl 02

$$f(x,b) = \mathbf{A}_T \rightarrow \mathbf{b} \quad \operatorname{GPD}(x,\xi=0,t=-\mathbf{A}_T^2)$$

Transverse spatial distribution of partons with \boldsymbol{x}

Defines "size" and "shape" of nucleon in QCD

Distributions change with x, dynamics, quarks vs. gluons

 $GPD(\xi = 0, t)$ not exp accesible, model dependence

• QCD energy-momentum tensor Ji 96; Polyakov 00; Lorce et al.

 $\langle T^{\mu\nu} \rangle(t) \quad \leftrightarrow \quad \int_{-1}^{1} dx \ x \ \mathsf{GPD}(x,\xi,t) \qquad \mathsf{GPD}=H,E$

Total and orbital angular momentum of quarks/gluons, nucleon spin decomposition

QCD forces acting inside nucleon, e.g. D-term \leftrightarrow pressure distribution

GPD integral over x not directly accessible

GPDs: Information and construction

• "Basic" information from limiting cases

 $GPDs(x, \xi = 0, t = 0) = PDFs(x),$ $\int_{-1}^{1} dx \ GPDs(x, \xi, t) = Vector/Axial \ FFs(t)$

• "New" information from hard exclusive processes

Photon production: Hard = O(1)Meson production: Hard = $O(\alpha_s)$ Basic idea: At large Q^2 and $W^2,$ transverse distances in interaction become \ll hadron size

Collinear factorization in asymptotic regime: Amplitude = GPDs * [hard] * DAs Radyushkin 96; Ji 96; Collins, Frankfurt, Strikman 96

 $\xi \sim x_{\rm B}/2$ fixed kinematically, x integrated over

Validity of asymptotic approximation must/can be tested experimentally and theoretically

Subasymptotic corrections (higher-twist, finite-size) large in meson production, included semi-empirically Frankfurt, Strikman, Koepf 96; Goloskokov, Kroll 08+

GPDs: Information and construction II

• Amplitudes as convolution integrals

(amplitudes = observables)

$$\operatorname{Amp}(\xi, t) = \int dx \frac{\operatorname{GPD}(x, \xi, t)}{x \pm \xi - i0} = i\pi \operatorname{GPD}(x = \xi, \xi, t) + \operatorname{PV} \int dx \frac{\operatorname{GPD}(x, \xi, t)}{x \pm \xi}$$

 $GPD(x = \xi, \xi, t)$ directly accessible from Im(Amp)

e.g. DVCS beam spin asymmetry

 $\mathsf{GPD}(x \neq \xi, \xi, t)$ only accessible "under integral"

• Possible analysis strategies

- A) Use GPD models to generate x,ξ dependence Input PDFs, FFs, polynomiality condition. Several implementations: Double distributions, dual parametrization Substantial model dependence at large $x,\xi\gtrsim 0.1$ Radyushkin 97; Polyakov, Shuvaev 00. See also Talk Liuti
- B) Work directly with amplitudes w/o representation in terms of GPDs [→ Neural Network Exmpl] Use dispersion relations Im(Amp) → Re(Amp) + subtraction Successful method for DVCS, but no direct information on GPDs Teryaev; Diehl; Ivanov; Polyakov, Vanderhaeghen; Belitsky, Müller
- C) Small x: Generate GPD at $\xi \neq 0$ from PDF through evolution Reasonable approximation, successful phenomenology Frankfurt, Strikman; Golec-Biernat, Martin, Shuvaev

GPDs: Small x regime, gluon imaging

Frankfurt, Strikman, CW 10

• Simplifications at small x $[\ll 0.1]$

Gluon and singlet quark GPDs dominate

Selective probes: Gluons with $J/\psi, \phi,$ gluons + singlet quarks with γ, ρ^0

 $\xi \neq 0$ GPDs from $\xi = 0 + \text{evolution}$

Collinear factorization \leftrightarrow dipole model

• Gluon distribution in transverse space

 $J/\psi,\phi$ HERA, COMPASS Ultraperipheral pA at LHC down to $x\sim 10^{-6}$ "Gluon imaging" with future EIC

Gluonic radius < quark radius, grows with $x \rightarrow 0$

• Extensive work on theory and analysis Vector mesons: Frankfurt, Strikman, Koepf 96; Ivanov, Schäfer, Szymanowski, Krasnikov 04; Anikin, Invanov, Pire, Szym. 10+; Kroll, Goloskokov 08+ DVCS: Müller, Kumericki

6

GPDs: Large x regime, quarks, spin

Quark GPDs at large x

Quark helicity unpol/pol Nucleon spin transverse/longitudinal Flavor/isospin dependence

 $\begin{array}{l} \mathsf{GPD}\ E(x,\xi,t) \text{: Effect of T nucleon spin} \\ \mathsf{on x-distribution of quarks} \leftrightarrow \mathsf{orbital AM} \end{array}$

• DVCS program JLab12, COMPASS, EIC

Polarization observables + cross sections

Leading-twist observables Belitsky, Müller, Kirchner 98; others

GPD extraction essentially model-dependent

• Quark transversity GPDs with meson production

 π^0 , η : Helcity-flip nucleon GPDs & meson DAs Describes JLab6 results; detailed studies with JLab12 Goldstein, Liuti et al 08+, Goloskokov, Kroll 09+; CLAS Bedlinsky et al. 12+, Kubarovsky 16 7

 $[\geq 0.1]$

GPDs: DVCS amplitude analysis using NNs

Amplitude extraction from DVCS observables Here: Moutarde, Sznajder, Wagner 2019; see also Kumericki, Müller, Schäfer 2011 Artificial Neural Network Parameterization of amps Feasibility of extraction studied using GPD models Regularization to avoid overfitting Uncertainty quantification using replica method

Model-independent method; does not directly access GPDs but extracts "observable" information

GPDs: Summary

- GPDs should be regarded as "concept" more than "function"
 Synthesize information, relate various structures/measurements
 Not necessarily to be measured "point by point"
- Main limitations of GPD studies on physics side

Relevance of asymptotic expressions for observables, power/higher-twist corrections? Complex structure of GPDs; connection between regions depends on dynamics Relation to observables through singular integrals

- Small x: Reduced complexity, successful phenomenology
- Large x: GPD extraction essentially model-dependent Alternative: Amplitude extraction, model-independent, reduced information
- Potential role of AI: Amplitude extraction from DVCS

Other applications?