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• Introduction

• Feature construction: principle

• Generalized Additive Models

• CLAS12 data analysis

OUTLINE
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• Physics objective: tomography of the nucleon through Generalized

Parton Distributions (GPDs)

→ Correlation between longitudinal momentum and transverse position of the 

partons in the nucleon

INTRODUCTION

p(p) p(p )

γ(q )γ∗(q)

e− (k)

e− (k )

x + ξ x − ξ

H, E, H̃ , Ẽ (x, ξ, t)

t = (p− p )2

• Accessed through exclusive

inelastic processes including

Deeply Virtual Compton

Scattering (DVCS)
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• Jefferson Lab: 10.6 GeV electron beam

• CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events (𝑒𝑝 → 𝑒𝑝γ)

INTRODUCTION
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Reconstruction 

algorithm
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• Jefferson Lab: 10.6 GeV electron beam

• CLAS12 data taking since 2018: hydrogen target

Event classification task: isolate DVCS events (𝑒𝑝 → 𝑒𝑝γ)

Machine learning approach to be compared to classical approach

Main background: π0-production events 𝑒𝑝 → 𝑒𝑝π0 → 𝑒𝑝γγ

INTRODUCTION

Detector

responses

4-vectors of 

detected

particles

DVCS

Background

Event 

selection
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE 

MACHINE LEARNING
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INTERPRETABLE / TRANSPARENT / INTELLIGIBLE 

MACHINE LEARNING

Make up for the model drawbacks (notably internal representation)
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FEATURE CONSTRUCTION: PRINCIPLE
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Motivation: these models do not build a sufficiently complex internal

representation of the data

In machine learning: feature engineering, feature construction

FEATURE CONSTRUCTION

𝑝𝑥
𝑒

θγ

φτ

𝑝𝑇
𝑙𝑒𝑝

𝑝𝑧
𝑒 + 𝑝𝑧

𝑝
+ 𝑝𝑧

γ1

cos(θ𝑙𝑒𝑝 − θτ)

cos(φ𝑙𝑒𝑝 − φτ)

𝑎𝑛𝑔𝑙𝑒 𝑝γ1 , 𝑝𝛾1 + 𝑝𝛾2

Base variables Discriminative and intelligible features
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Motivation: these models do not build a sufficiently complex internal

representation of the data

Constrained Genetic Programming: evolve a population of high-level

feature candidates

AI for nuclear physics workshop | Noëlie Cherrier

FEATURE CONSTRUCTION

+

+𝑝𝑇
𝑒

𝑝𝑇
𝑝

𝑝𝑇
γ1

Feature candidate example

→ Nodes are mathematical operators

→ Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for 

Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.
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FEATURE CONSTRUCTION

Generation 𝑛

Offspring
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FEATURE CONSTRUCTION

Evaluation and selection

Generation 𝑛

Offspring

Generation 𝑛 + 1
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GENERALIZED ADDITIVE MODELS
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Generalized Linear Models (GLM) :

𝑔 ො𝑦 = β0 + β1𝑥1 + …+ β𝑑𝑥𝑑

𝑔 ො𝑦 = ො𝑦 for regression, 𝑔 ො𝑦 = ln(
ො𝑦

1− ො𝑦
) for classification

GENERALIZED ADDITIVE MODELS (GAM)
ො𝑦 predicted output

𝑦 true output

𝑥1, ..., 𝑥𝑑 input variables
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Generalized Linear Models (GLM) :

𝑔 ො𝑦 = β0 + β1𝑥1 + …+ β𝑑𝑥𝑑

𝑔 ො𝑦 = ො𝑦 for regression, 𝑔 ො𝑦 = ln(
ො𝑦

1− ො𝑦
) for classification

Generalized Additive Models (GAM) :

𝑔 ො𝑦 = β0 + 𝑓1(𝑥1) + …+ 𝑓𝑑(𝑥𝑑)

GENERALIZED ADDITIVE MODELS (GAM)

Hastie, T. J. (1986). Generalized additive models. In Statistical models in S (pp. 249-307). Routledge.

Lou, Y., Caruana, R., Gehrke, J., & Hooker, G. (2013, August). Accurate intelligible models with pairwise interactions. ACM SIGKDD 2013.

+ + + ...

ො𝑦 predicted output

𝑦 true output

𝑥1, ..., 𝑥𝑑 input variables

𝑓1(𝑥1) 𝑓2(𝑥2) 𝑓3(𝑥3)
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

1) Initialize the model by predicting the proportion of the majority class 𝑝0. 

Compute the first model: 𝑔 ො𝑦 = ln
𝑝0

1−𝑝0
.

Compute the residual: 𝑟 = 𝑦 − ො𝑦 = 𝑦 − 𝑝0 (𝑝0 proportion of the majority class)

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

1) Initialize the model by predicting the proportion of the majority class 𝑝0. 

Compute the first model: 𝑔 ො𝑦 = ln
𝑝0

1−𝑝0
.

Compute the residual: 𝑟 = 𝑦 − ො𝑦 = 𝑦 − 𝑝0 (𝑝0 proportion of the majority class)

2) Build one feature 𝑥1 discriminative wrt the residual

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

1) Initialize the model by predicting the proportion of the majority class 𝑝0. 

Compute the first model: 𝑔 ො𝑦 = ln
𝑝0

1−𝑝0
.

Compute the residual: 𝑟 = 𝑦 − ො𝑦 = 𝑦 − 𝑝0 (𝑝0 proportion of the majority class)

2) Build one feature 𝑥1 discriminative wrt the residual

3) Fit a shape function 𝑓1 𝑥1 to the residual

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

1) Initialize the model by predicting the proportion of the majority class 𝑝0. 

Compute the first model: 𝑔 ො𝑦 = ln
𝑝0

1−𝑝0
.

Compute the residual: 𝑟 = 𝑦 − ො𝑦 = 𝑦 − 𝑝0 (𝑝0 proportion of the majority class)

2) Build one feature 𝑥1 discriminative wrt the residual

3) Fit a shape function 𝑓1 𝑥1 to the residual

4) Compute the new model: 𝑔 ො𝑦 = 𝑔 ො𝑦 + 𝑓1 𝑥1 and the new residual 𝑟 = 𝑦 − ො𝑦, 

and go back to step 2

EMBEDDED FEATURE CONSTRUCTION: IN GAM
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RESULTS

Baselines:

Neural network (2 hidden layers of size 100) 0.7012 ± 0,0062

Linear SVM 0.6911

C4.5 with feature construction 0.718 ± 0,020 
(15 nodes using feature

construction)

AdaBoost with feature construction 0.7280 ± 0.0063
(50 trees of 1 node each with

feature construction)

Gradient Boosting with feature construction 0.7446 ± 0.0071
(100 trees of 7 nodes each with

feature construction)

using Monte Carlo data
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RESULTS

𝑝𝑧
𝑒 + 𝑝𝑧

𝑝
+ 𝑝𝑧

γ1 𝑎𝑛𝑔𝑙𝑒 𝑝γ2 , 𝑝γ1 + 𝑝γ2

+ +    ...

Example of a model (the lower the 𝑦 value, the higher the probability to have a 

DVCS event):
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RESULTS

𝑝𝑧
𝑒 + 𝑝𝑧

𝑝
+ 𝑝𝑧

γ1 𝑎𝑛𝑔𝑙𝑒 𝑝γ2 , 𝑝γ1 + 𝑝γ2

+ +    ...

Example of a model (the lower the 𝑦 value, the higher the probability to have a 

DVCS event):

Beam energy
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CLAS12 DATA ANALYSIS

AI for nuclear physics workshop | Noëlie Cherrier
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Classical DVCS event selection

−0,05 𝐺𝑒𝑉² ≤ 𝑀𝑀²𝑒𝑝→𝑒𝑝γ𝑋 ≤ 0,05 𝐺𝑒𝑉²

0,1 𝐺𝑒𝑉 ≤ 𝑀𝑀𝑒𝑝→𝑒γ𝑋 ≤ 1,7 𝐺𝑒𝑉

−1 𝐺𝑒𝑉 ≤ 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑒𝑛𝑒𝑟𝑔𝑦 ≤ 2 𝐺𝑒𝑉

𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑝𝑇 (𝑒𝑝 → 𝑒𝑝𝑋) ≤ 0,4 𝐺𝑒𝑉

𝑐𝑜𝑛𝑒 𝑎𝑛𝑔𝑙𝑒 ≤ 4°

COMPARISON WITH OTHER ANALYSIS APPROACHES

Neural network approach

2 hidden layers of size (20, 30)

11 high-level input features

AI for nuclear physics workshop | Noëlie Cherrier

PhD student at 

Saclay+Glasgow
Post-doc at Saclay
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COMPARISON WITH OTHER ANALYSIS APPROACHES

Y axis: percentage of selected DVCS events among all existing DVCS in simulated data

X axis: percentage of Pi0 events still present in the selected subset
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COMPARISON WITH OTHER ANALYSIS APPROACHES

Y axis: percentage of selected DVCS events among all existing DVCS in simulated data

X axis: percentage of Pi0 events still present in the selected subset

! Pi0 subtraction method
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COMPARISON WITH OTHER ANALYSIS APPROACHES

−
𝑡

𝑄2 ≥ 0,25

• Neural network always perform

better

Better use of correlations?
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COMPARISON WITH OTHER ANALYSIS APPROACHES

−
𝑡

𝑄2 < 0,25

• Neural network always perform

better

Better use of correlations?

• Less significant differences here

These are the most interesting

bins for physics
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• Analysis of CLAS12 data to select DVCS events

• Feature construction principle: get new discriminative high-level variables

• Implementation in Generalized Additive Models

• Comparison with other analysis methods

• Open questions:

→ How to do a fair comparison of the different methods (test data, phase space bins, 

systematic errors...)?

→ How to assess interpretability in an objective manner?

→ How to transfer these models on real data?

CONCLUSION
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BACKUP

AI for nuclear physics workshop | Noëlie Cherrier
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Motivation: these models do not build a sufficiently complex internal

representation of the data

Constrained Genetic Programming: evolve a population of high-level

feature candidates

AI for nuclear physics workshop | Noëlie Cherrier

FEATURE CONSTRUCTION

+

+𝑝𝑇
𝑒

𝑝𝑇
𝑝

𝑝𝑇
γ1

Feature candidate example

→ Nodes are mathematical operators

→ Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for 

Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.



| 33

Motivation: these models do not build a sufficiently complex internal

representation of the data

Constrained Genetic Programming: evolve a population of high-level

feature candidates

AI for nuclear physics workshop | Noëlie Cherrier

FEATURE CONSTRUCTION

+

+𝑝𝑇
𝑒

𝑝𝑇
𝑝

θγ1

Feature candidate example

→ Nodes are mathematical operators

→ Leaves are base variables

Cherrier, N., Poli, J. P., Defurne, M., & Sabatié, F. (2019, June). Consistent Feature Construction with Constrained Genetic Programming for 

Experimental Physics. In 2019 IEEE Congress on Evolutionary Computation (CEC) (pp. 1650-1658). IEEE.
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Grammar-guided Genetic Programming

Ratle, A., & Sebag, M. (2001). Grammar-guided genetic programming and dimensional consistency: application to non-parametric identification in 

mechanics. Applied Soft Computing, 1(1), 105-118.

FEATURE CONSTRUCTION

<start> ::= <E> | <A> | <F>

<E> ::= <E> + <E> | <E> - <E> | <E> * <F>

| <E> / <F> | sqrt(<E2>) | <termE>

<A> ::= <A> + <A> | <A> - <A> | acos(<F>)

| asin(<F>) | atan(<F>) | <termA>

<F> ::= <F> + <F> | <F> - <F> | <F> * <F>

| <F> / <F> | <E> / <E> | <A> / <A>

| cos(<A>) | sin(<A>) | tan(<A>)

| <termF>

<E2> ::= <E2> + <E2> | <E2> - <E2>

| <E> * <E> | <E2> * <F> | <E2> / <F>

| square(<E>) | <termE2>
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FEATURE CONSTRUCTION

Generation 𝑛

Offspring
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FEATURE CONSTRUCTION

Mutation

Crossover
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FEATURE CONSTRUCTION

Evaluation and selection

Generation 𝑛

Offspring

Generation 𝑛 + 1
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Different FC methods, main difference = how to evaluate the feature candidates

Filter, wrapper, or embedded methods

FEATURE CONSTRUCTION

prior FC

(before learning the ML model)

Filter
Information gain, Gini index, ... of the 

candidate feature

Wrapper

Inclusion into the initial list:

𝑝𝑇
𝑒 , ϴ𝑒 , φ𝑒 , 𝑝𝑇

𝑝
, ϴ𝑝, φ𝑝, etc., 𝑝𝑇

𝑒 + 𝑝𝑇
𝑝
+ 𝑝𝑇

γ1

and training of a ML algorithm
(the fitness of the candidate is the test score of 

the ML algorithm)

+

+𝑝𝑇
𝑒

𝑝𝑇
𝑝

𝑝𝑇
γ1

𝑝𝑇
𝑒 + 𝑝𝑇

𝑝
+ 𝑝𝑇

γ1

Embedded
Build features during the induction process, 

usually with filter fitness functions

• Decision trees and ensemble methods

• Generalized Additive Models
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Idea: build one feature at a time, associated with one term of the GAM

→ gradient boosting

Objective function: minimize the cross entropy −𝑦 ln ො𝑦 − 1 − 𝑦 ln 1 − ො𝑦

1) Compute β0 = ln
𝑝0

1−𝑝0
to form the 1st model 𝑔(ො𝑦) = β0. 

The residual is 𝑟 = 𝑦 − ො𝑦 = 𝑦 − 𝑝0 (𝑝0 proportion of the majority class)

2) Build one feature 𝑥1 discriminative wrt the residual

Fitness function for the Genetic Programming algorithm:

• Shallow tree (maximum 4 leaves)

• Feature fitness: RMS error of the inducted tree with the residual

3) Fit a shape function 𝑓1 𝑥1 to the residual

4) Compute the new model: 𝑔 ො𝑦 = 𝑔 ො𝑦 + 𝑓1 𝑥1 and the new residual 𝑟 = 𝑦 − ො𝑦, 

and go back to step 2

EMBEDDED FEATURE CONSTRUCTION: IN GAM


