
Reinforcement
Learning for
Controls

Malachi Schram
Data Science Architecture and AI Lead

On behalf of ExaLearn Control Pillar Team

and the Controls for HEP Accelerators project

2

Talking Points

Control Application Pillar in ExaLearn

Controls for HEP accelerator

• “Reinforcement learning is learning what to do — how to
map situations to actions—so as to maximize a numerical
reward signal. The learner is not told which actions to take,
but instead must discover which actions yield the most
reward by trying them.” - Barton & Sutton

• Key concepts to reinforcement learning:
• Agent (controller – policy and sampling)

• Action (control signal)
• Environment (controlled system)

• State (representation of environment)
• Reward (numerical consequence of action)

• Sequence of experience and agent forms trajectory: S0,
A0, R0, S1, A1, R1, …

Reinforcement Learning

4

Controls for FNAL booster
• Goals: The goal is to reduce beam losses in the FNAL Booster by

developing a machine learning (ML) model that provides optimal set of
actions for accelerator controls:

• Clean/prune data, resample, correlation analysis, etc.
• Create digital twin of accelerator using historical and targeted data
• Create reinforcement learning (RL) workflow
• ML algorithm on a custom FPGA board to control the magnet power

supplies (GMPS)

Data
Prep

Digital
Twin

Reinforcement
Learning

Policy Model
to FPGA

5

FNAL Accelerator Complex

Fermilab Site

Booster ring

• Booster synchrotron: 400 MeV H- from Linac accelerated to 8 GeV
protons for delivery to Main Injector, experiments
• Batches delivered to MI/Recycler @15 hz ('rapid cycling')

• Efficient operation critical for PIP-II goal of MW beam

Courtesy: Christian Herwig

6

Digital Twin:
Use to mimic the accelerator response

• Goals:
• Develop a forward model to

predicts how the accelerator
responds to new setting
provided by the RL agent

• Key factors:
• Use variables identified

during data prep stage
• Initial model was developed

using historical data
• New data is required to

study additional correlations,
system lags and for better
interpolation Comparison between ML predictions (orange)

and real data (blue) shows good agreement

7

Reinforcement Learning
Workflow

• Goals: Develop a RL workflow that provide a policy
that creates a set of actions that optimizes reward

• Setup:
• Discretizes action space
• DQN policy model with greedy epsilon sampling
• Observation space was a full cycle
• Reward based on target error goal

Step (action)

Apply Regulator
(using alpha, gamma)

Calculate Error

Calculate Reward

Return
new state, reward, status

Predict using analytical
equations or from

Digital Twin

8

Example of reward from DQN RL
model using accelerator data

• Initial RL optimization show increasing total reward
• Identified optimal setting that requires validation and new data
• RL workflows have additional hyper-parameters that require optimization
• It will be important to optimization these hyper-parameters on DOE computing

resources.

36 Chapter 2: Multi-armed Bandits

where ln t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would have
to be raised to in order to equal t), Nt(a) denotes the number of times that action a has
been selected prior to time t (the denominator in (2.1)), and the number c > 0 controls
the degree of exploration. If Nt(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-root
term is a measure of the uncertainty or variance in the estimate of a’s value. The quantity
being max’ed over is thus a sort of upper bound on the possible true value of action a, with
c determining the confidence level. Each time a is selected the uncertainty is presumably
reduced: Nt(a) increments, and, as it appears in the denominator, the uncertainty term
decreases. On the other hand, each time an action other than a is selected, t increases but
Nt(a) does not; because t appears in the numerator, the uncertainty estimate increases.
The use of the natural logarithm means that the increases get smaller over time, but are
unbounded; all actions will eventually be selected, but actions with lower value estimates,
or that have already been selected frequently, will be selected with decreasing frequency
over time.

Results with UCB on the 10-armed testbed are shown in Figure 2.4. UCB often
performs well, as shown here, but is more di�cult than "-greedy to extend beyond bandits
to the more general reinforcement learning settings considered in the rest of this book.
One di�culty is in dealing with nonstationary problems; methods more complex than
those presented in Section 2.5 would be needed. Another di�culty is dealing with large
state spaces, particularly when using function approximation as developed in Part II of
this book. In these more advanced settings the idea of UCB action selection is usually
not practical.

1 250 500 750 1000

0

0.5

1

1.5

�-greedy � = 0.1

UCB c = 2

Average
reward

Steps

Figure 2.4: Average performance of UCB action selection on the 10-armed testbed. As shown,
UCB generally performs better than "-greedy action selection, except in the first k steps, when
it selects randomly among the as-yet-untried actions.

Exercise 2.8: UCB Spikes In Figure 2.4 the UCB algorithm shows a distinct spike
in performance on the 11th step. Why is this? Note that for your answer to be fully
satisfactory it must explain both why the reward increases on the 11th step and why it
decreases on the subsequent steps. Hint: if c = 1, then the spike is less prominent. ⇤

Ref. Barton & Sutton

9

Brief Overview of ExaLearn Control Pillar
•Goals

– Provide scalable control-related machine learning software for ECP applications
– Implement use case applications for demonstration and testing
– Run on exascale DOE leadership class computing facilities

•Methods
– Initially using deep reinforcement learning, however, the workflow can be

expanded to other methods
– Science use case: RL for temperature control for block copolymer self-

annealing in light source experiments
– EXARL software framework for exascale reinforcement learning for science and

benchmarking

10

Control Problems in Science
Simulation

• Accelerate sampling in a
simulation via search, to
reduce computation required
for solution

Experiment

• Guide scientific experiments -
eg. block copolymer self-
annealing

Operation

• Control HPC facility
resource management

• Control experimental
facilities (eg x-ray beam)

• Control air, land or space
vehicles

Initial State

Target https://www.olcf.ornl.gov/summit

https://www.materialise.com/en/press-
releases/materialise-brings-simulation-for-
additive-manufacturing-to-production-floor

11

Example of a Reinforcement Learning Algorithm Workflow

Deep Q-network (DQN)

DQN uses a deep neural
network to estimate the value of
taking a specific action at a
certain state, also called the
state-action value or Q-value.

The DQN agent, once trained
properly, suggests the action
with the highest Q-value as its
policy, and maximizes the total
reward over the episode.

DQN can suggest optimal
discrete actions.

train():
- Train active model

update():
- Soft update of the

target model
remember()

action()

• Policy Models (ML hyper-parameters)
• Exploit and explore (RL hyper-parameters)
• Soft update (RL hyper-parameters)
• Experiences buffer

12

Challenges for Block Copolymer
Experiments (BCP)
• BCP experiments are performed at

DOE light source user facilities.
• Temperature is adjusted to direct the

formation of the block copolymers to a
target morphology.

• Light source beam shining on sample at
small grazing incidence angle produces
a diffraction pattern

• The multi-dimensional energy
landscape underlying directed block
copolymer self-assembly requires
engineering a convoluted pathway in
order to obtain a target morphology.

Image from Nanoscale, 2018, 10, 416. Choo, Majewski,
Fukuto, Osuji and Yager.

13

RL algorithm develops policy that helps control
temperature during self-annealing (a), which
results in BCP morphology (b).

a b

Block Copolymer Reinforcement Learning Challenges and
Results
• Develop 2D/3D CPU and GPU

surrogate models
• Structure vector to capture

characteristics

14

Motivation for Deep RL Learning

Complex problems like
Go Game have almost
infinite possibilities

15

Why Reinforcement Learning at Scale?

https://openai.com/blog/ai-and-compute

Two Distinct Eras of Compute Usage in Training AI Systems

Excerpted from https://openai.com/blog/ai-and-compute

Reasons RL needs to scale:
• Environments may use many

computational resources (CPUs, GPUs,
etc.)

• Function approximator for complex tasks
will use deep ML models

• Large number of actions and/or states
• Policy network ML hyper-parameters
• New RL hyper-parameters will need to be

studied

16

Scaling Challenges for
Reinforcement Learning

• How many learners do we need?
• How many actors will saturate a learner?
• How to optimize multi-learners setup?
• How many experiences to send in batch to

learner?
• How much learning is required to maximize the

GPU efficiently?
• How to balance computation and memory usage

for learning versus environment on a node?
• How to minimize policy model lag/stagnation
• Tuning ML & RL learning parameters

– Extending CANDLE to incorporate RL
workflows and use sophisticated resources
management

Take away: Many challenges to scaling RL so use EXARL!

17

Easily eXtendable Architecture for
Reinforcement Learning (EXARL)

• EXARL: scalable RL framework for
scientific environments

• Extends OpenAI Gym’s
environment registry to agents

• Dynamic multi-node environments
• Abstract classes to mandate

necessary functionality
• Easy to register new agents and

environments
• Supports different hardware and

software infrastructures
– Use existing prevalent

infrastructure

18

Performance of EXARL – Preliminary
Results

Reinforcement learning with
ExaCartpole environment within
EXARL framework using DQN
algorithm on one node of Summit.

Preliminary results from the EXARL framework proxy agents and proxy learners run on
LANL Darwin cluster. These results show weak scaling of one learner and multiple
agents (processes) during online reinforcement learning on Broadwell nodes (2
sockets, 18 cores each). Number parent processes are shown; each parent spawned
2 children.

