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~~~ Reinforcement Learning

Pacific
Northwest

AAAAAAAAAAAAAAAAAA

« “Reinforcement learning is learning what to do — how to
map situations to actions—so as to maximize a numerical

reward signal. The learner is not told which actions to take, ACTION
but instead must discover which actions yield the most ‘ v
reward by trying them.” - Barton & Sutton
. . S
« Key concepts to reinforcement learning: Q ﬁ}
Agent (controller — policy and sampling) AGENT ENVIRONMENT

t |
STATE, REWARD

Action (control signal)

Environment (controlled system)
State (representation of environment)
Reward (numerical consequence of action)

Sequence of experience and agent forms trajectory: S,
Ao, RO, S1,A1, R1,
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e o« Controls for FNAL booster

AAAAAAAAAAAAAAAAAA

* Goals: The goal is to reduce beam losses in the FNAL Booster by
developing a machine learning (ML) model that provides optimal set of
actions for accelerator controls:

« Clean/prune data, resample, correlation analysis, etc.
 Create digital twin of accelerator using historical and targeted data
 Create reinforcement learning (RL) workflow

« ML algorithm on a custom FPGA board to control the magnet power
supplies (GMPS)
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- Booster synchrotron: 400 MeV H- from Linac accelerated to 8 GeV
protons for delivery to Main Injector, experiments

- Batches delivered to MI/Recycler @15 hz (‘rapid cycling')
- Efficient operation critical for PIP-1l goal of MW beam

MiniBoone  NuMI
(8 GeV) (120 GeV)

Main Injector
(150 GeV)

TeV extractJon
Recycler }n Alline collider aborts

p (8 Gev) SF fo

p abort CDF detector

Tevatron
(1 TeV)

DO detector
DO

Courtesy: Christian Herwig



~7"  Digital Twin:

Northwest Use to mimic the accelerator response

 Goals: RNN 0( LSTM

* Develop a forward model to g S N
predicts how the accelerator G T g
ft iy Ct O () ‘
T )
4

Vo

responds to new setting
provided by the RL agent

Vs

X¢

« Key factors:

e Use variables identified

during data prep stage
* Initial model was developed
using historical data

* New data is required to WWWWWWWW

study additional correlations, T = % % = =

system lags and for better | -
interpolation Comparison between ML predictions (orange)

and real data (blue) shows good agreement



~~~ Reinforcement Learning
Northwest Workflow

* Goals: Develop a RL workflow that provide a policy

Step (action)

that creates a set of actions that optimizes reward liselalislyg eliellieel
equations or from
° Setup: Digital Twin
 Discretizes action space
. . : : Apply Regulator
* DQN policy model with greedy epsilon sampling (using alpha, gamma)
» Observation space was a full cycle
» Reward based on target error goal Calculate Error
ACTION
_L Calculate Reward

@ G
oo Return
7 ENV|RU:‘MENT p e n new state, reward, status

STATE, REWARD




~7~~ Example of reward from DQN RL

Pacific

et MOdel using accelerator data

* |nitial RL optimization show increasing total reward
« ldentified optimal setting that requires validation and new data
« RL workflows have additional hyper-parameters that require optimization

* It will be important to optimization these hyper-parameters on DOE computing
resources.

1.5¢ UCB c=2

e-greedy € =0.1

50 | I

Average
40 1

reward
30 0.5}

Ref. Barton & Sutton
20 1
10 0-‘
0 I 250 500 750 1000
0 100 200 300 400 Steps

Episode



Brief Overview of ExalLearn Control Pillar

 Goals
- Provide scalable control-related machine learning software for ECP applications
- Implement use case applications for demonstration and testing
- Run on exascale DOE leadership class computing facilities

» Methods

- Initially using deep reinforcement learning, however, the workflow can be
expanded to other methods

- Science use case: RL for temperature control for block copolymer self-
annealing in light source experiments

- EXARL software framework for exascale reinforcement learning for science and
benchmarking




Control Problems in Science

. Accelerate sampling in a . Guide scientific experiments - - Control HPC facility
simulation via search, to eg. block copolymer self- resource management
reduce computation required annealing - Control experimental
for solution facilities (eg x-ray beam )

. - Control air, land or space
= W vehicles

User raw data

Initial State

s - S - S ~ N
’ = ; o — — ;
) K =L i ~ S :
S S ¢ e
https://www.materialise.com/en/press-

releases/materialise-brings-simulation-for-
additive-manufacturing-to-production-floor Target https.//www.olcf.ornl.gov/summit
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Example of a Reinforcement Learning Algorithm Workflow

DQN uses a deep neural
network to estimate the value of
taking a specific action at a
certain state, also called the
state-action value or Q-value.

The DQN agent, once trained
properly, suggests the action
with the highest Q-value as its
policy, and maximizes the total
reward over the episode.

DQN can suggest optimal
discrete actions.

Policy Models (ML hyper-parameters)
Exploit and explore (RL hyper-parameters)
Soft update (RL hyper-parameters)
Experiences buffer

train(): action( ACTION)

Train active model

| v
update(): Q
Soft update of the AGENT ENVIRONMENT
target model
remember( STATE, REWARD)

Initial Policy

State (Random, NN) Action

Target State

Reward Environment




Challenges for Block Copolymer
Experiments (BCP)

- BCP experiments are performed at
DOE light source user facilities.

- Temperature is adjusted to direct the
formation of the block copolymers to a
target morphology.

- Light source beam shining on sample at
small grazing incidence angle produces
a diffraction pattern

- The multi-dimensional energy
landscape underlying directed block
copolymer self-assembly requires
engineering a convoluted pathway in

order to obtain a target morphology. —
9 P 9y poly-grain f(’"’?} 1079 g

raw ata

— Image from Nanoscale, 2018, 10, 416. Choo, Majewski,
E\(\Q\)P sxoscee Fukuto, Osuji and Yager.

PROJECT




Block Copolymer Reinforcement Learning Challenges and
Results

RL generated Target Structure Vector
Develop 2D/3D CPU and GPU 2D CH image 2D CH image  at episode 0 step 99
surrogate models —— Target
Structure vector to capture 100 100 200 — RL
characteristics
- 50 50 100
a
0 0
0 100 0 100 200
Conponent of Structure Vector
Temperature
S s m oy 1.00 at episode 0 Score
RL algorithm develops policy that helps control ' —620
temperature during self-annealing (a), which
results in BCP morphology (b). 0.75 —640
3D Block Co-polymer Reinforcement Learning Application 0 5 O
initial structure @ end structure @ target structure ' —_ 6 6 O
Episode 76 Step 0 Episode 76 Step 99 agent was trained to achieve
3 ok 0.25 .
e —680
0 50 100 —0.05 0.00 0.05
Time Step Episode
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Motivation for Deep RL Learning

Traditional Reinforcement Learning Approach

@ Generally use a lookup table to decide an action

Action 1 | --- | Action n

State 1

State m

»

Deep Reinforcement Learning Approach

@ A lookup table can be large
= Approximation by Deep Learning method

@ Deep learning generally performs weII for thls apprOX|mat|on
with a big data s : race

|
(<]

ST =
Complex problems like ST = mle =2
https://skymind.ai/wiki/ _ - -

Go Garme have almos | | Eoeo-o o 5
infinite pOSSIbIIItleS deep-reinforcement-learning) - ‘ .
o=
=
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Why Reinforcement Learning at Scale?

Two Distinct Eras of Compute Usage in Training Al Systems

Reasons RL needs to scale:

Environments may use many
computational resources (CPUs, GPUs,
etc.)

Function approximator for complex tasks
will use deep ML models

Large number of actions and/or states
Policy network ML hyper-parameters

New RL hyper-parameters will need to be
studied

—
S \
\ EXASCALE
COMPUTING
\ PROJECT
S

Petaflop/s-day
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‘Gammon v2.1.
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AlphaGoZero
[

Neural Machine
Translation .

o ®TI7 Dota 1vl

VGG. :
AlexNet ¢
[l O

ResNets

3.4-month doubling

Deep B_elief Nets a_nd
layer-wise pretrammg. * o
DQN

o]
BiLSTM for Speech
o
LeNet-5

®
° RNN for Speech
ALVINN

< First Era Modern Era =

1990 2000 2010 2020

Excerpted from https.//openai.com/blog/ai-and-compute




Scaling Challenges for
Reinforcement Learning

How many learners do we need?
How many actors will saturate a learner?
How to optimize multi-learners setup?

How many experiences to send in batch to
learner?

How much learning is required to maximize the
GPU efficiently?

How to balance computation and memory usage
for learning versus environment on a node?

How to minimize policy model lag/stagnation
Tuning ML & RL learning parameters

- Extending CANDLE to incorporate RL
workflows and use sophisticated resources
management

\ @)
Parameters

@

bservations

Agent

{00 P

[

Learner

Heterogeneous node

]

Learner

[

Take away: Many challenges to scaling RL so use EXARL!

Heterogeneous node




Easily eXtendable Architecture for
Reinforcement Learning (EXARL)

EXARL: scalable RL framework for
scientific environments

Extends OpenAl Gym’s
environment registry to agents

Dynamic multi-node environments

Abstract classes to mandate
necessary functionality

Easy to register new agents and
environments

Supports different hardware and
software infrastructures

- Use existing prevalent
infrastructure

Deep neural network

action

reward

Logic

state

Simulate Block
Co-Polymer
self-assembly

Reduce
expensive
simulations
for additive
manufacturing

External

Backend

AP MPI 3 Keras

1 TensorFlow

theano pyTHRCH
Software

Hardware




Performance of EXARL — Preliminary

Results

70

single node

Reinforcement learning with
ExaCartpole environment within Preliminary results from the EXARL framework proxy agents and proxy learners run on
EXARL framework using DQN LANL Darwin cluster. These results show weak scaling of one learner and multiple
algorithm on one node of Summit.  agents (processes) during online reinforcement learning on Broadwell nodes (2

sockets, 18 cores each). Number parent processes are shown; each parent spawned
2 children.

time (s)

Processes/node = 8

5 10 15 20 25 30
# of nodes

35




