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Talking Points

Control Application Pillar in ExaLearn

Controls for HEP accelerator



• “Reinforcement learning is learning what to do — how to 
map situations to actions—so as to maximize a numerical 
reward signal. The learner is not told which actions to take, 
but instead must discover which actions yield the most 
reward by trying them.” - Barton & Sutton

• Key concepts to reinforcement learning:
• Agent (controller – policy and sampling)

• Action (control signal)
• Environment (controlled system)

• State (representation of environment)
• Reward (numerical consequence of action)

• Sequence of experience and agent forms trajectory:  S0, 
A0, R0, S1, A1, R1, …

Reinforcement Learning
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Controls for FNAL booster
• Goals: The goal is to reduce beam losses in the FNAL Booster by 

developing a machine learning (ML) model that provides optimal set of 
actions for accelerator controls:

• Clean/prune data, resample, correlation analysis, etc.
• Create digital twin of accelerator using historical and targeted data 
• Create reinforcement learning (RL) workflow 
• ML algorithm on a custom FPGA board to control the magnet power 

supplies (GMPS)

Data
Prep

Digital 
Twin

Reinforcement 
Learning

Policy Model 
to FPGA
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FNAL Accelerator Complex

Fermilab Site

Booster ring

• Booster synchrotron: 400 MeV H- from Linac accelerated to 8 GeV 
protons for delivery to Main Injector, experiments
• Batches delivered to MI/Recycler @15 hz ('rapid cycling')

• Efficient operation critical for PIP-II goal of MW beam

Courtesy: Christian Herwig
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Digital Twin:
Use to mimic the accelerator response

• Goals: 
• Develop a forward model to 

predicts how the accelerator 
responds to new setting 
provided by the RL agent

• Key factors:
• Use variables identified 

during data prep stage 
• Initial model was developed 

using historical data
• New data is required to 

study additional correlations, 
system lags and for better 
interpolation Comparison between ML predictions (orange) 

and real data (blue) shows good agreement
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Reinforcement Learning 
Workflow

• Goals: Develop a RL workflow that provide a policy 
that creates a set of actions that optimizes reward

• Setup:
• Discretizes action space
• DQN policy model with greedy epsilon sampling
• Observation space was a full cycle 
• Reward based on target error goal

Step (action)

Apply Regulator
(using alpha, gamma)

Calculate Error

Calculate Reward

Return 
new state, reward, status

Predict using analytical 
equations or from 

Digital Twin
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Example of reward from  DQN RL 
model using accelerator data

• Initial RL optimization show increasing total reward
• Identified optimal setting that requires validation and new data
• RL workflows have additional hyper-parameters that require optimization
• It will be important to optimization these hyper-parameters on DOE  computing 

resources.

36 Chapter 2: Multi-armed Bandits

where ln t denotes the natural logarithm of t (the number that e ⇡ 2.71828 would have
to be raised to in order to equal t), Nt(a) denotes the number of times that action a has
been selected prior to time t (the denominator in (2.1)), and the number c > 0 controls
the degree of exploration. If Nt(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-root
term is a measure of the uncertainty or variance in the estimate of a’s value. The quantity
being max’ed over is thus a sort of upper bound on the possible true value of action a, with
c determining the confidence level. Each time a is selected the uncertainty is presumably
reduced: Nt(a) increments, and, as it appears in the denominator, the uncertainty term
decreases. On the other hand, each time an action other than a is selected, t increases but
Nt(a) does not; because t appears in the numerator, the uncertainty estimate increases.
The use of the natural logarithm means that the increases get smaller over time, but are
unbounded; all actions will eventually be selected, but actions with lower value estimates,
or that have already been selected frequently, will be selected with decreasing frequency
over time.

Results with UCB on the 10-armed testbed are shown in Figure 2.4. UCB often
performs well, as shown here, but is more di�cult than "-greedy to extend beyond bandits
to the more general reinforcement learning settings considered in the rest of this book.
One di�culty is in dealing with nonstationary problems; methods more complex than
those presented in Section 2.5 would be needed. Another di�culty is dealing with large
state spaces, particularly when using function approximation as developed in Part II of
this book. In these more advanced settings the idea of UCB action selection is usually
not practical.
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Figure 2.4: Average performance of UCB action selection on the 10-armed testbed. As shown,
UCB generally performs better than "-greedy action selection, except in the first k steps, when
it selects randomly among the as-yet-untried actions.

Exercise 2.8: UCB Spikes In Figure 2.4 the UCB algorithm shows a distinct spike
in performance on the 11th step. Why is this? Note that for your answer to be fully
satisfactory it must explain both why the reward increases on the 11th step and why it
decreases on the subsequent steps. Hint: if c = 1, then the spike is less prominent. ⇤

Ref. Barton & Sutton
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Brief Overview of ExaLearn Control Pillar
•Goals

– Provide scalable control-related machine learning software for ECP applications
– Implement use case applications for demonstration and testing
– Run on exascale DOE leadership class computing facilities

•Methods
– Initially using deep reinforcement learning, however, the workflow can be 

expanded to other methods
– Science use case:  RL for temperature control for block copolymer self-

annealing in light source experiments
– EXARL software framework for exascale reinforcement learning for science and 

benchmarking
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Control Problems in Science
Simulation

• Accelerate sampling in a 
simulation via search, to 
reduce computation required 
for solution

Experiment

• Guide scientific experiments -
eg. block copolymer self-
annealing

Operation

• Control HPC facility  
resource management 

• Control experimental 
facilities (eg x-ray beam )

• Control air, land or space 
vehicles 

Initial State

Target https://www.olcf.ornl.gov/summit

https://www.materialise.com/en/press-
releases/materialise-brings-simulation-for-
additive-manufacturing-to-production-floor
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Example of a Reinforcement Learning Algorithm Workflow

Deep Q-network (DQN)

DQN uses a deep neural 
network to estimate the value of 
taking a specific action at a 
certain state, also called the 
state-action value or Q-value.

The DQN agent, once trained 
properly, suggests the action 
with the highest Q-value as its 
policy, and maximizes the total 
reward over the episode.  

DQN can suggest optimal 
discrete actions.

train():
- Train active model

update():
- Soft update of the 

target model 
remember(                )

action(        )

• Policy Models (ML hyper-parameters)
• Exploit and explore (RL hyper-parameters)
• Soft update (RL hyper-parameters)
• Experiences buffer
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Challenges for Block Copolymer 
Experiments (BCP)
• BCP experiments are performed at 

DOE light source user facilities.
• Temperature is adjusted to direct the 

formation of the block copolymers to a 
target morphology.

• Light source beam shining on sample at 
small grazing incidence angle produces 
a diffraction pattern

• The multi-dimensional energy 
landscape underlying directed block 
copolymer self-assembly requires 
engineering a convoluted pathway in 
order to obtain a target morphology.

Image from Nanoscale, 2018, 10, 416.  Choo, Majewski, 
Fukuto, Osuji and Yager.
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RL algorithm develops policy that helps control 
temperature during self-annealing (a), which 
results in BCP morphology (b).

a b

Block Copolymer Reinforcement Learning Challenges and 
Results
• Develop 2D/3D CPU and GPU 

surrogate models
• Structure vector to capture 

characteristics
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Motivation for Deep RL Learning 

Complex problems like 
Go Game have almost 
infinite possibilities 
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Why Reinforcement Learning at Scale? 

https://openai.com/blog/ai-and-compute

Two Distinct Eras of Compute Usage in Training AI Systems

Excerpted from https://openai.com/blog/ai-and-compute

Reasons RL needs to scale:
• Environments may use many 

computational resources (CPUs, GPUs, 
etc.) 

• Function approximator for complex tasks 
will use deep ML models 

• Large number of actions and/or states
• Policy network ML hyper-parameters
• New RL hyper-parameters will need to be 

studied
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Scaling Challenges for 
Reinforcement Learning

• How many learners do we need?
• How many actors will saturate a learner?
• How to optimize multi-learners setup?
• How many experiences to send in batch to 

learner?
• How much learning is required to maximize the 

GPU efficiently?
• How to balance computation and memory usage 

for learning versus environment on a node?
• How to minimize policy model lag/stagnation 
• Tuning ML & RL learning parameters

– Extending CANDLE to incorporate RL 
workflows and use sophisticated resources 
management

Take away:  Many challenges to scaling RL so use EXARL!
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Easily eXtendable Architecture for 
Reinforcement Learning (EXARL)

• EXARL: scalable RL framework for 
scientific environments

• Extends OpenAI Gym’s 
environment registry to agents

• Dynamic multi-node environments
• Abstract classes to mandate 

necessary functionality
• Easy to register new agents and 

environments
• Supports different hardware and 

software infrastructures
– Use existing prevalent 

infrastructure
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Performance of EXARL – Preliminary 
Results

Reinforcement learning with 
ExaCartpole environment within 
EXARL framework using DQN 
algorithm on one node of Summit.

Preliminary results from the EXARL framework proxy agents and proxy learners run on 
LANL Darwin cluster. These results show weak scaling of one learner and multiple 
agents (processes) during online reinforcement learning on Broadwell nodes (2 
sockets, 18 cores each). Number parent processes are shown; each parent spawned 
2 children.


