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Eigenvector continuation and machine learning



When a control parameter in the Hamiltonian matrix is varied smoothly, 
the extremal eigenvectors do not explore the large dimensionality of the 
linear space.  Instead they trace out trajectories with significant 
displacements in only a small number of linearly-independent directions.  

Eigenvector continuation

We can prove this empirical observation using analytic function theory and 
the principles of analytic continuation. 

Since the eigenvector trajectory is a low-dimensional manifold embedded in 
a very large space, we can learn the shape of this eigenvector manifold using 
variational subspace approximation.
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Consider a one-parameter family of Hamiltonian matrices of the form

where H0 and H1 are Hermitian.  Let the eigenvalues and eigenvectors be
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We can perform series expansions around the point c = 0.

This is the strategy of perturbation theory.  We can compute each term in 
the series when the eigenvalues and eigenvectors of H0 are known or 
computable.
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Perturbation theory

convergence region
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Bose-Hubbard model

In order to illuminate our discussion with a concrete example, we consider
a quantum Hamiltonian known as the Bose-Hubbard model in three 
dimensions.  It describes a system of identical bosons on a three-dimensional
cubic lattice.

The parameter t controls the hopping the bosons on the lattice, and U is the 
single-site pairwise interaction.  We set the chemical potential to be
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Perturbation theory fails at strong attractive coupling
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Restrict the linear space to the span of three vectors
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We can learn the eigenvector trajectory in one region and use 
eigenvector continuation to extrapolate to another region.
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Applying eigenvector continuation to more than one eigenvector at a time 
accelerates convergence near avoided level crossings.  We can learn the 
properties of the system near branch points.
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“With SP-CC(64) this took about 1 hour on a standard laptop, while an 
equivalent set of exact CCSD computations would require 20 years.”

14



Summary

Eigenvector continuation is a method that

learns eigenvector trajectories by using

variational subspace approximation.

Eigenvector continuation itself can be

regarded as machine learning where the

training consists of finding optimized

subspace bases. It also can be used with no

explicit training as an accurate and fast

emulator for applications such as

uncertainty quantification and mapping out

quantum phase diagrams.
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