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Figenvector continuation

When a control parameter in the Hamiltonian matrix is varied smoothly,
the extremal eigenvectors do not explore the large dimensionality of the
linear space. Instead they trace out trajectories with significant
displacements in only a small number of linearly-independent directions.

We can prove this empirical observation using analytic function theory and
the principles of analytic continuation.

Since the eigenvector trajectory is a low-dimensional manifold embedded in
a very large space, we can learn the shape of this eigenvector manifold using
variational subspace approximation.
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Consider a one-parameter family of Hamiltonian matrices of the form
H (C) =H 0+ cH 1
where Hy and H; are Hermitian. Let the eigenvalues and eigenvectors be

H(c)[y;(c)) = Ej(e)[¥;(c))

We can perform series expansions around the point ¢ = 0.
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This is the strategy of perturbation theory. We can compute each term in
the series when the eigenvalues and eigenvectors of H, are known or
computable.



convergence region

Perturbation theory
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Bose-Hubbard model

In order to illuminate our discussion with a concrete example, we consider

a quantum Hamiltonian known as the Bose-Hubbard model in three
dimensions. It describes a system of identical bosons on a three-dimensional
cubic lattice.
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p(n) = af (n)a(n)

The parameter ¢ controls the hopping the bosons on the lattice, and U is the
single-site pairwise interaction. We set the chemical potential to be
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Perturbation theory fails at strong attractive

exact energies ¥
perturbation order 1 - - - -
perturbation order2 --------
perturbation order 3 — - —
perturbation order 4 ——
perturbation order 5 — - -
perturbation order 6 - - -

Ui

coupling




Ey/t

Restrict the linear space to the span of three vectors
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We can learn the eigenvector trajectory in one region and use
eigenvector continuation to extrapolate to another region.

Ey/t

-4 + exact energies % .

' EC with 1 sampling point - - - -

EC with 2 sampling points -------

EC with 3 sampling points — - —

A EC with 4 sampling points ——

8* EC with 5 sampling points — - - .
sampling points <&

5 -4 -3 -2 -1 0 1 2



Applying eigenvector continuation to more than one eigenvector at a time
accelerates convergence near avoided level crossings. We can learn the
properties of the system near branch points.

6
4 | Mmﬁ‘;::::f:g:¢¢¢:::::¢¢;::::::;¢::
oL_----"" |
0O+ PPt 4 AN AN AAAASSSSSSIOIIGISIICIOICISICISICISISIRIPIOIICORIOR
7,5;::;('Jv;%7vv,,;:::::: vvvv KKK
o 2 1
/5

4+ exact energies .

pa EC with 1 sampling point - - - -
6 EC with 2 sampling points -------- |

) EC with 3 sampling points — - —

EC with 4 sampling points ——
8T EC with 5 sampling points — - - .

sampling points &
_10 | | | | | |

-5 -4 -3 -2 -1 0 1 2



|5, (cky))

C1
CK
|wj1\1 (Ckm )>
Co
N N

[45(co)




Eigenvector Continuation as an Efficient and Accurate Emulator for
Uncertainty Quantification

S. Konig,'2:* A. Ekstrom,> T K. Hebeler,!»2:* D. Lee,%'$ and A. Schwenk! 2:5: 1
arXiv:1909.08446
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Figure 1. Comparison of different emulators for the “He ground-state energy using 12 training data points to explore a space
where three LECs are varied. The left panel includes samples for both interpolation (solid symbols) and extrapolation (semi-
transparent symbols). See main text on how these are defined. The right panel shows the same data restricted to interpolation
samples (note the smaller axis range).

11



L Jw = 36, Npax = 16 .'
—250

16 dimensions, 64 training data

O
T

—o00r o Eigenvector Continuation
B Polynomial Interpolation

Regression prediction (MeV)

=750 VYV  Gaussian Process |
~1000F g -
—1250F -
\'4
—1500F -
7200 —150  —100 =50 0

Exact value (MeV)

Figure 2. Comparison of different emulators for the *He
ground-state energy using 64 training data points to explore
a space where all 16 LECs are varied.
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PHYSICAL REVIEW LETTERS 123, 252501 (2019)

Global Sensitivity Analysis of Bulk Properties of an Atomic Nucleus

Andreas Ekstrom' and Gaute Hagen23
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“With SP-CC(64) this took about 1 hour on a standard laptop, while an
equivalent set of exact CCSD computations would require 20 years.”
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FIG. 3. (Color Online) (Left panel) Main and total effects (in %) for the ground-state energy (left bar) and charge radius (right
bar) in '°0, grouped per LEC. The main and total effects were computed from (16 +1)-2'® = 1,114,112 quasi MC evaluations
of the SP-CC(64) Hamiltonian. The vertical lines on each bar indicate bootstrapped 95% confidence intervals. A larger
sensitivity value implies that the corresponding LEC is more critical for explaining the variance in the model output. (Right
panels) Histograms of the ground-state energy (top) and charge radius (bottom) from which total variances are decomposed.
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Summary

Eigenvector continuation is a method that
learns eigenvector trajectories by using
variational subspace approximation.
Eigenvector continuation itself can be
regarded as machine learning where the
training consists of finding optimized
subspace bases. It also can be used with no
explicit training as an accurate and fast
emulator for  applications such as
uncertainty quantification and mapping out

quantum phase diagrams.
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