
CLAS12 DC Tracking with
Machine Learning

G. Gavalian & V. Ziegler
On Behalf of the CLAS12 AI Project Group
AI Workshop – Jefferson Lab, 03/04/2020

Machine Learning for CLAS12: Motivation
Largest CPU resource driver for event
reconstruction is charged particle tracking

• DC Pattern recognition ~ 2 % CPU usage
• DC hit-based tracking ~ 58% CPU usage
• DC time-based tracking ~ 37% CPU usage

Targeted Areas of Improvement for CLAS12 DC Tracking:

• Processing speed
• More efficient noise rejection
• Combinatorics (ghost tracks)

Combinatorics requires multiple track fits

Segment overlap region yields multiple track candidates

2

AI Project Team

• G. Gavalian (lead) – Neural Network evaluation software integration into CLAS12

software infrastructure.

• V. Ziegler – AI-Assisted tracking code implementation. Benchmarking, testing and

debugging of tracking code.

• Center For Real-Time Computing (CRTC): N. Chrisochoides, P. Thomadakis,

A. Angelopoulos – NN training and interface to CLAS12 framework; computing

resources for the project (GPU farm equipped with high-end NVIDIA V100 GPUs).

Ø Testing different NN to determine which one is most suitable for CLAS12

Ø Writing of software package using Tensorflow/Keras/SciLearn to train drift

chamber data, and run inference.

Ø Development of Python interface for reading HIPO data and writing inference

results into Output.

3

Aims and Approach

• AI project phase 1 goals:
҆Use AI to identify which DC track segments are consistent

with being on-track.
҆Save these data in a dedicated data structure that is used

by the tracking code as input, by-passing traditional pattern
recognition phase, and hit-based tracking combinatorial
selection algorithms.
҆Input: DC hits corresponding to wires (ordered by sector,

layer, component number). Hits are stored in row-wise data
structured called `banks’.

• Approach:
҆Provide samples consisting of hits belonging to track

segments to the neural network: training samples and
testing samples.

4

W
ir
e
 N

b
.

Layer Nb.

Choosing an AI Network

Boosted Decision Trees Multilayer Perceptron Convolutional Neural Network

5

Neural Network Samples Used for Training
• 3 samples with different input parameters tested for training

҆BDT & MLP inputs [sample 6]
• Average wire number of superlayer 1 segment à mapped to

a local point

• Angle between segment local points in superlayer 1 & 2

• Average wire number of superlayer 3 segment à mapped to

a local point

• Angle between segment local points in superlayer 3 & 4

• Average wire number of superlayer 5 segment à mapped to

a local point

• Angle between segment local points in superlayer 5 & 6

҆MLP inputs [sample 36]
• Array of 36 numbers with wire (H.O.T.) number (or average wire number for double hit) for each of the

36 DC layers.

҆CNN inputs [sample 4032]
• Picture with 36 x 112 dimensions passed to the network: if wire (H.O.T.) active à white pixel, else,

black pixel.

6

La
ye

r N
um

be
r

Wire Number
Superlayer 6

Superlayer 1

Superlayer 2

Superlayer 3

Superlayer 4

Superlayer 5

Illustration of Selected Segments from the MLP
after Training

RAW HITS

NN INPUT HITS
(i.e. SEGMENTS)

RECONSTRUCTED TRACK
(CONV. TRACKING)

7

NN TRACK PREDICTION
(highest prob.)

NN TRACK PREDICTION
(lowest prob.)

La
ye

r N
um

be
r

Wire Number

AI Performance Accuracy Categorization
• NN returns a probability (softmax fcn in last layer of classifier) for track candidates.

• Based on this probability a label is created (1: true, 0: false) to flag candidates.

• Categorization of NN outcome based on correct estimation of the track candidate:

҆A1: # samples with correctly identified tracks / # input samples; no mis-identified tracks.
• Only one track identified in given group of hits. This track candidate is the correct one.

҆Ac: # samples with correctly identified track + mis-ided candidates/ # input samples; i.e. contains
False Positives.

• Multiple candidates identified. Contains candidates with highest probability that do not correspond to
correct tracks (False Positives).

҆Ah: # samples with correctly identified tracks / # input samples; with the valid track assigned the
highest probability.

• Multiple candidates identified. Candidates with highest probability that are correctly identified.
҆Af: # samples with correct track not-identified / # input samples; i.e. False Negatives

8

Accuracy Scores for AI Networks Tested

• Preliminary results obtained with training samples
split into multiple sets
• Split data using DC data corresponding to a 50

nA sample (Run 5038)
• Using sectors, 1, 3, 4, 5, 6 for training;
• Using sector 2 for testing.

• Best track finding accuracy with CNN and MLP.

• More tests being done.

9

Accuracy Scores for AI Networks Tested

CNN

A1: # samples with correctly identified tracks / # input samples; no
mis-identified tracks.
Ac: # samples with correctly identified track + mis-ided candidates/
input samples; i.e. contains False Positives.
Ah: # samples with correctly identified tracks / # input samples;
with the valid track assigned the highest probability.
Af: # samples with correct track not-identified / # input samples;
i.e. False Negatives

NN A1 Ac Ah Af Training
Accuracy

Training
Time

Prediction
Time

CNN 0.964 0.301 0.894 0.035 93.4% 457 sec 0.0012 sec

BDT 0.933 0.199 0.919 0.066 99.9% 1.7 s 0.000005 sec

MLP 0.965 0.202 0.921 0.034 94.7% 252 (CPU) 0.000004 sec

10

Implementation in Current Tracking
TDC bank NN bank

Track id Index in TDC bank

Track id 1

• Creation of new bank read to get track seeds at hit-based
level

• Dedicated DC service to use this bank to reconstruct track seeds à
passed to hit-based fitting.

11

Expected Performance Improvement

Traditional Hit-Based Tracking

AI-Assisted Hit-Based Tracking

• Hits-On-Track saved in NN Bank.
• Developed the API to use new bank for seeding

in DC package.
• Dedicated service to run AI reconstruction if

the NN hits bank exists in the HIPO file.
• Python interface to HIPO being developed to

put the results of the NN into a HIPO file.

• Even with unoptimized NN efficiency, the gain in reconstruction
speed will lead substantial time gains in (re-) calibration of data.

12

Current Status & Summary
• DC Tracking modified to work with Neural-Network-predicted Hits-On-Track. (Done)
• Framework in python to train and test track candidates (done)
• Validation of network performance with MC (in progress)
• Implementation of Neural Network software into workflow (in progress):
҆Interface to HIPO with python to read track candidates.
҆Interface with TensorFlow to get track candidate predictions and write them into the HIPO

file.

• TO-DO
҆Training on HIPO 4 data (varying conditions).
҆Validation of accuracy using data and MC samples (i.e. sample with background-merging).
҆Possibly include the prediction algorithm into decoding.
҆Dedicated clustering service (ongoing).

13

BACK-UP SLIDES

14

Network Configuration
Basic VGG16 model was used to train on track reconstruction images.

Initial sample of event 20K for positive and negative samples.

Inference time ~3ms (GPU NVIDIA Tesla K40m)

Reducing network size will reduce inference time.

For comparison decoding time per event is ~15ms.

15

