CLAS12 DC Tracking with Machine Learning

<u>G. Gavalian & V. Ziegler</u> On Behalf of the CLAS12 AI Project Group AI Workshop – Jefferson Lab, 03/04/2020

Machine Learning for CLAS12: Motivation

Largest CPU resource driver for event reconstruction is charged particle tracking

- DC Pattern recognition ~ 2 % CPU usage
- DC hit-based tracking ~ 58% CPU usage
- DC time-based tracking ~ 37% CPU usage

Targeted Areas of Improvement for CLAS12 DC Tracking:

- Processing speed
- More efficient noise rejection
- Combinatorics (ghost tracks)

Al Project Team

G. Gavalian (lead) – Neural Network evaluation software integration into CLAS12 software infrastructure.

V. Ziegler – AI-Assisted tracking code implementation. Benchmarking, testing and debugging of tracking code.

Center For Real-Time Computing (CRTC): N. Chrisochoides, P. Thomadakis, A. Angelopoulos – NN training and interface to CLAS12 framework; computing resources for the project (GPU farm equipped with high-end NVIDIA V100 GPUs).

- > Testing different NN to determine which one is most suitable for CLAS12
- Writing of software package using Tensorflow/Keras/SciLearn to train drift chamber data, and run inference.
- Development of Python interface for reading HIPO data and writing inference results into Output.

Aims and Approach

- Al project phase 1 goals:
 - Use AI to identify which DC track segments are consistent with being *on-track*.
 - Save these data in a dedicated data structure that is used by the tracking code as input, by-passing traditional pattern recognition phase, and hit-based tracking combinatorial selection algorithms.
 - Input: DC hits corresponding to wires (ordered by sector, layer, component number). Hits are stored in row-wise data structured called `banks'.
- Approach:
 - Provide samples consisting of hits belonging to track segments to the neural network: training samples and testing samples.

Choosing an AI Network

Neural Network Samples Used for Training

- 3 samples with different input parameters tested for training
 - -BDT & MLP inputs [sample 6]
 - Average wire number of superlayer 1 segment → mapped to a local point
 - Angle between segment local points in superlayer 1 & 2
 - Average wire number of superlayer 3 segment → mapped to a local point
 - Angle between segment local points in superlayer 3 & 4
 - Average wire number of superlayer 5 segment → mapped to a local point
 - Angle between segment local points in superlayer 5 & 6
 - -MLP inputs [sample 36]
 - Array of 36 numbers with wire (H.O.T.) number (or average wire number for double hit) for each of the 36 DC layers.
 - CNN inputs [sample 4032]
 - Picture with 36 x 112 dimensions passed to the network: if wire (H.O.T.) active → white pixel, else, black pixel.

6

Illustration of Selected Segments from the MLP after Training

Al Performance Accuracy Categorization

- NN returns a probability (softmax fcn in last layer of classifier) for track candidates.
- Based on this probability a label is created (1: true, 0: false) to flag candidates.
- Categorization of NN outcome based on correct estimation of the track candidate:
 - -A1: # samples with correctly identified tracks / # input samples; no mis-identified tracks.
 - Only one track identified in given group of hits. This track candidate is the correct one.
 - Ac: # samples with correctly identified track + mis-id^{ed} candidates/ # input samples; i.e. contains False Positives.
 - Multiple candidates identified. Contains candidates with highest probability that do not correspond to correct tracks (*False Positives*).
 - Ah: # samples with correctly identified tracks / # input samples; with the valid track assigned the highest probability.
 - Multiple candidates identified. Candidates with highest probability that are correctly identified.
 - -Af: # samples with correct track not-identified / # input samples; i.e. False Negatives

Accuracy Scores for Al Networks Tested

- Preliminary results obtained with training samples split into multiple sets
 - Split data using DC data corresponding to a 50 nA sample (Run 5038)
 - Using sectors, 1, 3, 4, 5, 6 for training;
 - Using sector 2 for testing.
- Best track finding accuracy with CNN and MLP.
- More tests being done.

Method/Train set	Split ÷	Test Set/Format [≑]	A1 ÷	Ac ¢	Ah ¢	Af ¢	Training Acc +	Validation Acc +	Time to train (sec)	Time to predict (sec)
CNN/10-7-19	10/90	10-7-19/4032	0.915	0.511	0.832	0.084	0.9389	0.900	199	0.0012
	20/80	10-7-19/4032	0.935	0.450	0.863	0.064	0.9310	0.9136	226.1	0.0012
	30/70	10-7-19/4032	0.945	0.389	0.878	0.054	0.934	0.924	257.1	0.0012
	40/60	10-7-19/4032	0.955	0.382	0.885	0.044	0.934	0.926	288.1	0.001
	50/50	10-7-19/4032	0.944	0.331	0.880	0.055	0.934	0.931	319	0.001
	60/40	10-7-19/4032	0.954	0.353	0.888	0.045	0.934	0.93	347.4	0.0013
	70/30	10-7-19/4032	0.954	0.350	0.885	0.045	0.9343	0.9325	380.8	0.0014
	80/20	10-7-19/4032	0.959	0.327	0.892	0.040	0.9344	0.9315	412.4	0.0014
	90/10	10-7-19/4032	0.956	0.332	0.880	0.043	0.9347	0.9332	444.3	0.0014
	100/0	10-7-19/4032	0.964	0.301	0.894	0.035	0.934	N/A	457	0.0012
ExtraTrees/10- 7-19	10/90	10-7-19/6	0.923	0.241	0.914	0.077	1.0	0.92	0.2	0.000005
	20/80	10-7-19/6	0.921	0.217	0.914	0.078	1.0	0.924	0.3	0.000005
	30/70	10-7-19/6	0.923	0.217	0.912	0.076	1.0	0.925	0.4	0.000005
	40/60	10-7-19/6	0.927	0.205	0.914	0.072	1.0	0.927	0.6	0.000005
	50/50	10-7-19/6	0.930	0.204	0.916	0.069	1.0	0.928	0.7	0.000005
	60/40	10-7-19/6	0.929	0.206	0.918	0.070	1.0	0.915	0.8	0.000005
	70/30	10-7-19/6	0.932	0.203	0.92	0.067	1.0	0.93	1.0	0.000005
	80/20	10-7-19/6	0.933	0.199	0.918	0.066	1.0	0.917	1.2	0.000005
	90/10	10-7-19/6	0.933	0.197	0.919	0.066	0.9999	0.931	1.3	0.000005
	100/0	10-7-19/6	0.933	0.199	0.919	0.066	0.9999	N/A	1.7	0.000005
	100/0	10-7-19/36	0.910	0.339	0.883	0.089	0.9999	N/A	8.4	0.000005
MI P/10-7-10	100/0	10-7-19/6	0.965	0.202	0.921	0.034	0.947	N/A	252 (CPU)	0.000004
WLF/10-7-19	100/0	10-7-19/36	0.920	0.312	0.849	0.079	0.921	N/A	546 (CPU)	0.00001

Accuracy Scores for Al Networks Tested

NN	A1	Ac	Ah	Af	Training Accuracy	Training Time	Prediction Time
CNN	0.964	0.301	0.894	0.035	93.4%	457 sec	0.0012 sec
BDT	0.933	0.199	0.919	0.066	99.9%	1.7 s	0.000005 sec
MLP	0.965	0.202	0.921	0.034	94.7%	252 (CPU)	0.000004 sec

A1: # samples with correctly identified tracks / # input samples; no mis-identified tracks.

Ac: # samples with correctly identified track + mis-id^{ed} candidates/ # input samples; i.e. contains *False Positives*.

Ah: # samples with correctly identified tracks / # input samples; with the valid track assigned the highest probability.

Af: # samples with correct track not-identified / # input samples;

i.e. False Negatives

Implementation in Current Tracking

Expected Performance Improvement

- Hits-On-Track saved in NN Bank.
- Developed the API to use new bank for seeding in DC package.
- Dedicated service to run AI reconstruction if the NN hits bank exists in the HIPO file.
- Python interface to HIPO being developed to put the results of the NN into a HIPO file.

• Even with unoptimized NN efficiency, the gain in reconstruction speed will lead substantial time gains in (re-) calibration of data.

Current Status & Summary

- DC Tracking modified to work with Neural-Network-predicted Hits-On-Track. (Done)
- Framework in python to train and test track candidates (done)
- Validation of network performance with MC (in progress)
- Implementation of Neural Network software into workflow (in progress):
 - -Interface to HIPO with python to read track candidates.
 - Interface with TensorFlow to get track candidate predictions and write them into the HIPO file.
- TO-DO
 - Training on HIPO 4 data (varying conditions).
 - -Validation of accuracy using data and MC samples (i.e. sample with background-merging).
 - Possibly include the prediction algorithm into decoding.
 - Dedicated clustering service (ongoing).

BACK-UP SLIDES

Network Configuration

- ◆ Basic VGG16 model was used to train on track reconstruction images.
- ✦ Initial sample of event 20K for positive and negative samples.
- ✦ Inference time ~3ms (GPU NVIDIA Tesla K40m)
- ✦ Reducing network size will reduce inference time.
- ✦ For comparison decoding time per event is ~15ms.

class