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Disclaimer

● Both A.I. and NP are highly diverse fields
● The materials I will cover is largely limited to what I 

have received as response

● I will only briefly mention edge-cases such as 
Bayesian optimization
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Overview, Terminology

Artificial Intelligence (A.I.), Andrew Moore 2017:

“Artificial intelligence is the science and engineering of making computers 
behave in ways that, until recently, we thought required human intelligence.”

Forbes, “Carnegie Mellon Dean Of Computer Science On The Future Of AI” (2017)
https://www.forbes.com/sites/peterhigh/2017/10/30/carnegie-mellon-dean-of-computer-science-on-the-future-of-ai/

Machine learning (ML), Arthur Samuel 1959:

“Programming computers to learn from experience should eventually eliminate 
the need for much of this detailed programming effort.”

A. Samuel, IBM J. Res. Dev. 3(3), 210–229 (1959)

(Artificial) neural network [(A)NN], Warren McCulloch, Walter Pitts 1943 (many 
thereafter):

Computation model loosely modeled after the biological axon-synapse-dendrite 
connections

Why is it useful?
● Eliminates the need for human programming
● Outperforms programming with structured human knowledge (“symbolic AI”)
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A.I. vs. ML vs. NN
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AI landscape
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AI landscape
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Brief timeline
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//

1954 Bevatron

1959 CERN PS

“AI” 1956

“M
L” 1959

1988 B. Debny, “NN and

cellular autom
ata in exp. HEP”

https://doi.org/10.1016/0010-4655(88)90004-5

Intel ETANN 1989

CNN 1989

Y. LeCun et al., “Backprop. applied

to handwritten ZIP code recog.”

https://doi.org/10.1162/neco.1989.1.4.541

1993 CERN W
A92/BEATRICE

Online neural trigger (ETANN

prototype, Siem
ens M

A16)

http://inspirehep.net/record/388359

AdaBoost 1997

Google TPU 2016

 (systolic array)

2004 M
iniBooNE

“BDT as an alternative to ANN for PID”

https://doi.org/10.1016/j.nim
a.2004.12.018

2007 TM
VA (integrated in ROOT 5.11/06)

1996 DESY H1 L2NN

Theano 2007

Torch 2002

IJCNN GTSRB 2011

Cireşan et al., “M
ulti-colum

n

DNN for traffic sign classification”

https://doi.org/10.1016/j.neunet.2012.02.023

(GPU, superhum
an im

g. rec.)

TensorFlow 2015

Raina, M
adhavan, Ng 2009

“Large-scale deep unsuperv. learn.

using graphics processors”

https://doi.org/10.1145/1553374.1553486

2014 P. Baldi, P. Sadowski, D. W
hitson

“Searching for exotic particles in HEP

with deep learning”

https://doi.org/10.1038/ncom
m

s5308

XGBoost2014

https://doi.org/10.1016/0010-4655(88)90004-5
https://doi.org/10.1162/neco.1989.1.4.541
http://inspirehep.net/record/388359
https://doi.org/10.1016/j.nima.2004.12.018
https://doi.org/10.1016/j.neunet.2012.02.023
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1038/ncomms5308


Use of AI in NP analyses
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             Exp →

↓ Method

Heavy-ion

ALICE, STAR, 
EIC, LBNL ALICE 
(+LEP) LDRD

0νββ/neutrinos

EXO, NEXT, 
DUNE/THEIA

Photoproduction

GlueX

γ-ray tracking

GRETA

Calib. ✔ (TPC, jets, kin.) ✔ (RICH)

Multiv. Cut ✔ (HF) ✔ (PID)

CNN (superv.) ✔ (PID)

Graph convol. ✔ (tracking)

RNN ✔ (PID)

Semi-sup.

Generative ✔ (jets)

Dimens. red. ✔ (PID)



AI tools in NP analyses
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NN

Keras/TensorFlow
PyTorch

SparseConvNet
Scikit-Learn

BDT

TMVA
XGBoost

Infrastructure

Horovod



Supervised: Calibration
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Large distortions are expected in LHC Run-3 due to the presence of a intense flux of ions 
produced un-ionization processes:
• very slow ion drift speed (~0.16s compared to ~92μs for electrons) 
• not uniform electric fields cause deviations from the expected field lines

Deep neural network algorithms being studied to perform fast calculation of the distortion 
maps based on the expected digital current measured by TPC readout

distortion along the z axis 

CERN-LHCC-2013-020 / ALICE-TDR-016 

ALICE, TPC charge distortion



Supervised: Calibration
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Subtraction of underlying-event energy for 
jets at low pT very challenging in heavy-ion 
collisions:

• large region-to-region fluctuations

Traditional techniques: event-by-event 
subtraction of the average energy density + 
unfolding 

ML techniques for jet-by-jet background subtraction:
• exploit the different properties of particles 

belonging to the event background and those 
belonging to the jet (jet constituents)

• Regression algorithms based on shallow neural 
networks, random forest and linear regression

    → push jet measurements in heavy-ion down to lower 
momenta

https://arxiv.org/pdf/1810.06324.pdf
Rüdiger Haake, Constantin Loizides



Supervised: Calibration
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Abdullah Farhat, Yuesheng Xu (Department of Mathematics, Old Dominion University)
Markus Diefenthaler, Dmitry Romanov, Douglas Higinbotham (EIC Center, Jefferson Lab)
Andrii Verbytskyi (Max-Planck-Institut für Physik)

EIC

Use both electron 
and hadronic final 
state (overdeter-
mined)

Optimally 
determine ep 
collision kinematics



Bayesian optimization: Calibration
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Real Offsets
3-seg mirror:

θx,θy,θz=(0.25,0.50,0.15) deg, y = 0.5 mm;
bar z = 2.0 mm; 

PMT (r,θ)=(1.5 mm,1.0 deg)

Recipe: For each call of the optimizer, M offset points are explored 
using  N different particles (for each call). The total number of calls is T

T=120  M=10 N=125 
Particles used = 15000 
Points explored = 1200 

FoM = LogL normalized to a default alignment

 4

 2

 1

(7D)

Minimum at
3-seg mirror:

θx,θy,θz= (0.2485, 0.5832, 0.1171) deg, 
y = 0.5894 mm; 

bar z =2.0788 mm; 
PMT (r,θ)=1.8690 mm, 1.3544 deg

3-seg mirror offsets 
(most critical for alignment) 
found within the tolerances. 

GlueX, Cristiano Fanelli



Supervised: Cut-based reco./analyses
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ALICE, Heavy Flavor (Λc)

Gian Michele Innocenti

0-10%
30-50% 0-10%

30-50% 
pp

Λ c
 / 

D
0

BDT techniques (XGBoost) have been 
exploited to select heavy-flavor decays 
in central PbPb collisions:
• E.g. Λc selection (cτ~50μm)
• TOF and TPC variables used in 

the training to exploit correlations 
with topological selections 

• increase in significance up to 3-4 
at low pT with respect to standard 
analysis techniques



Supervised: Cut-based reco./analyses
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STAR, also HF/Λc, Nu Xu

QM 2017 —> QM 2018:
• Total statistics doubled with combined 2014+2016 data
• More than 50% improvement in signal significance using Boosted Decision Trees! 

Effectively providing 2x additional data!

Rectangular Cuts (QM 2017)                                                Using Boosted Decision Trees (QM 2018)

2014 data

2014 + 
2016
 data



Supervised: Cut-based reco./analyses
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EXO-200
0νββ with background from detector material

2018 result using BDT: 15% better than energy-only

https://doi.org/10.1103/PhysRevLett.120.072701

2019 result using BDT: 25% better than energy-only

https://doi.org/10.1103/PhysRevLett.123.161802

Liang Yang, Gaosong Li

226Ra
2νββ 0νββ

~35% γ-rejection
~90% signal efficiencyData (dot) vs MC (line)

Line: MC   Circle: data

https://doi.org/10.1103/PhysRevLett.120.072701
https://doi.org/10.1103/PhysRevLett.123.161802


Supervised: Image-based (CNN)

21Y. Lai (LBNL NSD)
Status of A.I. in Experimental Analysis

 

A. Li et al.  NIM A 947 (2019) 162604

Reject 61% of background and 
keep 90% of the signal in 
KamLAND-Zen

• Greatly improved background rejection when 
used on simulated events 

• A. Li and C. Grant (Boston University) are 
implementing this network model and a 
more sophisticated spherical CNN on the 
KamLAND-Zen and SNO+ experiments

KamiLAND-Zen, Christopher Grant



Supervised: Image-based (CNN)
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NEXT’s  3D images – lend themselves naturally 
to DNNs

JHEP 1910 (2019) 230. JHEP 10 (12019) 51.

NEXT

2D CNN classification of Xe TPC

Planned semantic segmentation of 
decay candidates

Runs on OLCF Summit with PyTorch 
+ SparseConvNet and Horovod

Eric Church

                               FRIB Hall B

                               Michelle Kouchera



Supervised: Image-based (CNN)
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• Searching for rare events in liquid noble gas detectors requires excellent 
background rejection.

• Backgrounds (gamma rays and betas) produce differently shaped waveforms than 
CEvNS signals (nuclear recoils).

• Convolutional Neural Network can be trained on waveform images to provide 
classification.

• Provides a tool to discriminate event types at detector-thresholds where 
conventional analysis fails.

NR

ER

NR

ER

• Sig
• Bkg

Waveforms Network Input

Jacob Daughhetee, U. of Tennessee, Knoxville

COHERENT, Kate Scholberg



Supervised: Graph convolution
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GRETA

Gamma-ray tracking

Tracks from multiple-
scattering

Several recent technologies 
considered:

Bayesian search for Ge-transport + 
CNN (for interaction point)

Graph convolution (for tracking)



Supervised: RNN

25Y. Lai (LBNL NSD)
Status of A.I. in Experimental Analysis

AUC = 0.78

Signal photonsdouble beta decay background-1
(8B)

Noise photons

Signal photons

Noise photons

AUC = 0.78

LAPPD for THEIA 0νββ, Andrey Elagin

Performance for accepting 0νββ 
(positive) and rejecting 8B background 
(negative)

LSTM used due to high sparsity/mostly 
empty pixels

Traditional rejection only works with 
known vertex



Generative: Simulation
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• CaloGAN models a 3-layer calorimeter 
detector inspired by that of the ATLAS LHC 
experiment

3x96

12x12

12x6
• Custom NN design

• sparsity
• high dynamic range
• highly location-dependent
features

• Particle physics uses detailed micro-physics detector 
simulations (e.g. with Geant4) 

• >~50% LHC computing budget  (109 CPU hours) 
• Much of this compute time in calorimeter ‘shower’

M. Paganini, L. de Oliveira, and B. Nachman, 
Phys. Rev. Lett. 120 (2018) 042003.

LHC ATLAS, Wahid Bhimji (NERSC)

                                                                Application for EIC?



Generative: Automated analysis
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LBNL LDRD, YSL, Mateusz Ploskon, Felix Ringer

● Discovery of new observables by NN 
(arXiv:1810.00835)

● Discovery of theoretical models via automated analysis
● A generator that mimicks the quark/gluon passing the 

plasma, and learns data-driven from experiment how 
to parton-shower and hadronize

● A discriminator looks at both the output of the 
generator, and real measurement data, and decide if 
this was simulated or is the reality/reference

Experimentalist NN learning 
how to measure plasma with 
Jewel

NN reduced to 13 algebraic 
terms



Dimensionality reduction
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PID GlueX DIRC C. Fanelli and J. Pomponi. “DeepRICH: Learning Deeply Cherenkov Detectors.” arXiv:1911.11717 
(2019),  C. Fanelli, ”Machine learning for imaging Cherenkov detectors”, JINST 15 C02012 (2020)

Fanelli & Pomponi proved that deepRICH can reach the PID performance of 
established algorithms. This depends only on the available resources for 

Improvement by ~4 orders of magnitude the reconstruction time. 

injected π 
reconstructed  π

@ 5 GeV/c

Cristiano Fanelli



Challenges
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Methodological challenges using current AI techniques:

• How to find the least complex model that fits the job 
description? “Model parameter efficiency”

• Uncertainty quantification (UQ): Reliability data vs. MC 
and how to avoid rare, but catastrophically wrong results

Infrastructure challenges:

• Lack of GPU at high-throughput computing (HTC) 
facilities, HTC projects require separate high-
performance computing (HPC) allocation for GPU 
training



Opportunities for NP
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Area where NP benefits greatly from AI application:

• Fast turn-around using simulation, and without 
investing in many person-years of custom algorithm 
development

• Performance that are difficult/humanly impossible to 
achieve with manually crafted algorithms

• Fast reconstruction without manually tuned 
GPU/FPGA code

• Many experiments already benefit from off-the-shelf 
methods



Opportunities beyond NP
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Some of the projects/goals are unique to NP and solves challenges 
that are cross-cutting to other fields

• Large (measurement) sample size allowing generative models, 
automated learning of underlying physics principles.

• Some of the data sets are not first-principles calculable: strong 
interaction physics, many-body physics

• Problems demanding innovative reconstruction algorithms

Cross-cutting goals where collaboration with wider AI field would 
be beneficial:

• Study of physics behavior: NN with built-in known 
symmetries/conservation laws
–Interpretability
–Data efficiency



Summary
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● There is already wide adoption of AI techniques in NP

● AI for NP promises:
– Fast development cycle
– Efficient utilization of commercial hardware

● It comes with a few pitfalls

● There is uniqueness of NP and the dataset we are 
dealing with, for AI application
– Potential synergies and collaboration with the wider 

AI field for cross-cutting questions



Thanks
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Wahid Bhimji, Eric Church, Mario Cromaz, Jacob 
Daughhetee, Markus Diefenthaler, Andrey Elagin, 
Cristiano Fanelli, Gian Michele Innocenti, Gaosong Li, 
Kate Scholberg, Nu Xu, Liang Yang

ALICE, COHERENT, EXO, GlueX, GRETA, KamiLAND-
Zen, NEXT, STAR
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