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AD subprojects target national problems in DOE mission areas

Health care

Accelerate 
and translate 

cancer research 
(partnership with NIH)

Energy security

Turbine wind plant 
efficiency

Design and 
commercialization 

of SMRs

Nuclear fission 
and fusion reactor 
materials design

Subsurface use 
for carbon capture, 
petroleum extraction, 

waste disposal

High-efficiency, 
low-emission 

combustion engine 
and gas turbine 

design

Scale up of clean 
fossil fuel
combustion

Biofuel catalyst 
design

National security

Next-generation, 
stockpile 

stewardship codes 

Reentry-vehicle-
environment 
simulation

Multi-physics science 
simulations of high-

energy density 
physics conditions

Economic security

Additive 
manufacturing 

of qualifiable
metal parts

Reliable and 
efficient planning 
of the power grid

Seismic hazard 
risk assessment

Earth system

Accurate regional 
impact assessments 

in Earth system 
models

Stress-resistant crop 
analysis and catalytic 

conversion 
of biomass-derived 

alcohols

Metagenomics 
for analysis of 

biogeochemical 
cycles, climate 

change, 
environmental 
remediation

Scientific discovery

Cosmological probe 
of the standard model 

of particle physics

Validate fundamental 
laws of nature

Plasma wakefield
accelerator design

Light source-enabled 
analysis of protein 

and molecular 
structure and design

Find, predict, 
and control materials 

and properties

Predict and control 
magnetically 

confined fusion 
plasmas

Demystify origin of 
chemical elements

This is a diverse 
portfolio of 

applications!
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Overarching Goals for ExaLearn

• Provide exascale ML software for use by:
– ECP Applications Projects
– Other ECP Co-design Centers
– DOE Experimental Facilities
– DOE Leadership Class Computing Facilities

• Establish multidisciplinary collaborations in learning technologies that cross-cut ECP projects:
– AD projects that share an interest in ML methods
– ST projects
– HI/PathForward projects

• Key idea is to leverage ongoing ML efforts at labs, extend them to new projects, and find a way to 
draw new ideas out of their original projects without requiring unfunded mandates.

Initial 
Discussions: 

April 2018

Proposal 
Submitted: 
June 2018

Project 
Kickoff: 

September 
2018

Exploring 
Options/
Making 
Plans...

ExaLearn: Year One 
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Guiding Principles

•ExaLearn produces a Software Toolset that:
– Is applicable to multiple problems within the DOE mission
– Has a line-of-sight to exascale computing, e.g., uses exascale platforms directly or 

provides essential components to an exascale workflow
– Does not replicate capabilities easily obtainable from existing, widely available 

packages
– Builds in domain knowledge where possible (not often done industry, although efforts 

beginning at IBM, GE, etc.); “physics”-based ML and AI are recurring themes 
– Quantifies uncertainty in a predictive capacity   
– Is both interpretable and reproducible
– Is based on mathematically well-grounded methods
•For example, some nice theory now for GANs, but more work needs to be done.
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Application Priorities Determine Machine Learning Methods

ExaLearn focuses on employing the “right tool for the job”

• Deep Learning (CNN, RNN, etc.)

• Ensemble Methods and Random Forest Methods

• Reinforcement Learning

• Kernel Methods

• Tensor Methods

• Graph-Based Learning

• Large-scale System Integration (combining traditional HPC workloads with machine learning)
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Relationships between Machine Learning and HPC

• HPC for Machine Learning: HPC technologies are applied to learning tasks to accelerate computation and/or 
solve larger problems.

• Machine Learning for HPC: Learning technologies are applied to HPC computations to improve their 
performance in some way, e.g., by choosing the next simulation(s) to perform.

ML for HPCHPC for ML

Courtesy of: Gadi Singer
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Surrogates

• ML-created models

• Faster and/or higher 
fidelity models

• Generative networks

• Using ML to replace 
complicated physics

• Cosmology

Control

• ML-controlled 
experiments

• Efficient exploration of 
complex space

• Reinforcement Learning

• Use RL agent to control 
light source 
experiments

• Temperature control for 
Block Co-Polymer 
(BCP) experiments

Design

• ML-created physical 
structures

• Optimized proposal for 
desired behavior of 
structure within complex 
design space 

• Graph-Convnets

• Use Graph-CNN to 
propose new structures 
that respect chemistry

• Molecular Design

ExaLearn Application Pillars

Inverse

• ML projection from 
observation to original 
form

• Back-out complex input 
structure from observed 
data

• Regression models

• Predicting crystal 
structure from light 
source imaging

• Material structure from 
neutron scattering

Image courtesy Sutton, Barto, 
Reinforcement Learning 2017

ΩΛ ΩM σ8…



Fitting the Universe

L(Our Universe| initial conditions, forces)

t=380,000 yr

t=13.7 billion yr

Initial conditions:
Marginalize over all possible density + velocity 

fields

Observables:
6D information per object: x, y, z, vx, vy, vz
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Why do we need simulations?

Two point correlation functions are a way to measure cosmology: what is the power 
spectrum of distances between every galaxy and every other galaxy as a function of

time (redshift)? It requires a deep understanding of galaxy selection, completeness and 
the systematics of each.
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Surrogates: Realistic Simulations on the Cheap

• Challenge and Importance: Many DOE simulation efforts could benefit 
from having realistic surrogate models in place of computationally expensive 
simulations. These can be used to quickly flesh out parameter space, help 
with real-time decision making and experimental design, and determine 
the best areas to perform additional simulations. We are targeting large-scale structure simulations of the 
universe. As the field is well developed, the scale can easily be ramped up to an exascale ML challenge, 
and the field is robust enough to explore systematics at the sub-percent level. 

• ML impact: Neural-networks-based generative models can make reliable surrogate models of expensive 
simulations for data augmentation purposes. Such surrogate models can be used to aid in cosmological 
analysis to reduce systematic uncertainties in observations.

• Timeliness: The ExaSky application project is producing the largest LSS simulations now, the DESI 
experiment starts next year, and LSST takes its first science images in 2021.

• Urgency: All cosmological measurements today are limited by systematics, not statistics. To reduce 
these uncertainties and make the most of these future experiments, thousands (if not millions) of 
exascale-sized simulations will need to be carried out. Surrogate models are a viable path forward to  
achieve this goal—but only if their limitations are fully understood.

• Benefit to ECP-Large DOE Experiments: Once demonstrated, this software framework can be easily 
adapted to other fields and simulation areas, such as combustion.
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Deep Learning to the Rescue?

• Jointly optimize Discriminator (D) and 
Generator (G) NNs

ªG architecture like decoder in 
ConvAE
ªLoss for G/D in opposition

• On ‘natural images’ GANs can be 
unstable, our problems have advantages:

ªunderlying physics structure
ªexisting, labeled simulation samples 
ªmetrics to evaluate

• Build on industry research – e.g. 
convolutional DCGAN
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CosmoGAN

• Calculate power spectrum for generated images and validation sample

• Excellent agreement (K-S p_value > 0.995 for 246/248 moments)

• GAN not explicitly trained to reproduce these distributions

• Also higher-order Minkowski functionals are reproduced
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ExaLearn
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Looking beyond the good press…
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Making things Stable



17

Adding Physics to the GANs
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Current 2-D State-of-the-Art

LBANN to the rescue!
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VAE for simple to full-physics models to observations

Visualization of the pipeline output. A 3D dark matter distribution (of which a 2D 
slice is shown in panel (a)) is the principal input to the workflow, which tries to 
produce the corresponding Ly-alpha flux field FR (b). The prediction FG is shown 
in panel (c). Generally, structures at both large and small scales, as well as the 
distortions that warp them in redshift space, are captured well.

Nyx with only gravity and particle and Nyx with full hydro and gas physics.

(a)

(b)

(c)
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Design: Expanding Computational Design to the Exascale

Existing 
Solutions

Optimized 
Systems

Generate
Designs

Simulate 
Designs

HPC

Current Model: Humans steer HPC, HPC performs simulations (Months-Years)

Why is this limited? Humans are slow. Slow decisions, slow to learn

Needed Solution: HPC steering itself (Days-Weeks)!

Generate
Designs

Simulate 
Designs

Exascale HPC

Electrolytes

Water Clusters

Better Batteries

Better Science
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Steering HPC Requires Extensive Machine Learning

Create 
Designs

Simulate 
Designs

Existing 
Solutions

Optimized 
Designs

Score 
Designs

Select 
Simulations

Generative Models

Supervised Learning Active Learning

ExaLearn 
Design App

• Our goal is to provide a generalized framework for common data abstractions.
• For example, data in multiple chemistry applications is modeled as graphs.
• Our API will require users to focus on implementing a few functions.
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Example Workflow: Molecular Design

Create Designs
[101 node-hr]

Simulate Designs
[104 node-hr]Existing Solutions Optimized Designs

Score Designs
[102 node-hr]

Select and 
Explanation of Top 

Designs
[102 node-hr]

Graph/Molecular generative models 
(Autoencoders,
GANs, RL algorithms)

103 mols

105 mols 103 cycles

105 mols

103 mols
1 calc/mol

Ensemble of Deep Neural Networks
- Continuous-filter CNNs
- Message-Passing Networks
- […]

103 calcs

Active Learning policies driven by graph 
descriptors, tuned with reinforcement 
learning

Atomistic Calculations:
Quantum or Classical
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FY19 Results: Building Problem-Specific Components

RL-based implementation 
of structure design

Scalability studies with 
Graph-CNNs (on Theta and Summit)

General-purpose descriptors 
for interpretable models

Highest 
energy

Lowest 
energy

1-bond addition 2-adds, 1-remove

1-add

rotation

1. Develop Reinforcement Learning pipeline for graph-based networks (with ExaLearn control)
2. Tailor Reinforcement Learning algorithms with physics-aware ML algorithms
3. Develop interpretable ML models for graph-based models of atomic/molecular structure
4. Generate novel electrolyte molecules and water clusters
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Key Goals: Scalability and Interpretability

Scalability: handle combinatorial explosion in the 
state-search space

Interpretability: generate design pathways that 
scientists can reason about
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How will we find our Target Structures?

Learning MRL is the 
focus on this tutorial
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Machine Learning for Inverse Problems
Problem Definition

Use ML methods to solve the inverse problem of predicting material 
structures from experimental data 

(diffraction patterns called Bragg profiles in this demo)

Main FY19 Outcomes

• Scalable distributed framework for generation of labelled simulated 
neutron diffraction data set implemented; Framework potentially 
generalizable to other simulators.

• Multiple labelled data sets of modest sizes generated; Initial design of 
a classifier for structural symmetry prediction tested.

• Multiple shallow regressor models for parameter predictions trained; 
Using best model, about 90% prediction accuracy demonstrated.

• Together, these constitute one of the first evidences of the feasibility 
of material structure prediction using neutron scattering data.

• All efforts in the inverse problem application built ground up from 
scratch; Paper reporting this effort to be submitted in October, 2019 

Expensive 

Forward 

Simulation

Current Loop Refinement Method

Inferences are time-consuming, less accurate 

and model-driven

ExaLearn
Trained
Models

DIFFRACTOMETER

BRAGG

STRUCTURE

TA
R

G
ET

 M
A

TE
R

IA
L

PROFILE

Proposed ExaLearn Method

Once trained, predictions are fast, more 

accurate and data-driven

Team

Cristina Garcia Cardona (LANL), Ramakrishnan Kannan (ORNL), Thomas Proffen 
(ORNL), Travis Johnston (ORNL), Katherine Page (ORNL/UTK), David Womble (ORNL), 

Sudip K Seal (ORNL, POC)
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Inverse Problems in Materials Science : ML Pipeline

Predict Symmetry 

of Structure

(Trained ExaLearn 

Classifier)

Instrument 
Information

Bragg Profile

Symmetry

Predict Internal 

Parameters  of 

Structure

(Trained ExaLearn 

Regressor)

• Inter-ionic distances

• Bond angles

• Thermal parameters

• …

ExaLearn Pipeline for Material Structure Determination from Neutron Scattering Data 

There are seven 

crystallographic 

classes in all

No. of parameters 

vary depending on 

the symmetry class.

Preliminary

ExaLearn 

classifier 

classifies three 

symmetry 

classes

Preliminary

ExaLearn 

regressor is 

based on 

random forests  
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Inverse Problems in Materials Science : Status   

Class Label Data Size Time Taken 
(in hr) No. of Cores

Cubic 125,000 120 2

Monoclinic 297,910 32 24

Triclinic 804,357 10 48

Tetragonal 998,584 96 48

GSAS 
Diffraction 
Simulation

GSAS 
Diffraction 
Simulation

GSAS 
Diffraction 
Simulation

GSAS 
Diffraction 
Simulation

Parallel Distributed 
Surrogate Simulations

<X1,y1>

<X2,y2>

<Xn,yn>

<Xi,yi>
….

….

Labeled Samples 
(Bragg Profiles)

Input 
Information

Bragg profile Parameters

Generation of Large-scale Training Data

• Instrument 
specifications

• Inter-ionic spacings
• Bond angles
• Thermal parameters
• …..

Training Data Generation

Labelled data generation for the full problem space 

and training deeper networks will require extreme 
scale compute time and resources – next steps!

Initial Evaluation of Regressors 

• Unconstrained Least Squares

• Non-Negative Least Squares

• Multi-Label Regressor with Gradient Boosted Trees

• Support Vector Machine – Regression

• Random Forests

Initial Design of Classifier 

• 1D-Convolution (16 kernels, width 3)

• 1D-Max Pooling (kernel width 2)

• 1D-Convolution (32 kernels, width 4)

• 1D-Max Pooling (kernel width 2)

• Fully Connected Layer (256 hidden neurons)

• ReLU (non-linear activation)

• Fully Connected Layer (3 output neurons, one for each class)

• Softmax (probability distribution over the 3 classes).

Best performance 
(about 90% accuracy 
with cubic symmetry)

Models were tested against 
annotated experimental data from 
the NOMAD diffractometer in SNS 
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Extreme-scale Machine Learning for Inverse Problems
Background

• Long term goal: develop and deploy ML-driven solutions of large-scale inverse problems that are 
directly relevant to DOE-related science and technology

• Given a set of observations, inverse problems seek to determine the parameters that produced 
those observations.

• Inverse problems arise in numerous DOE-related scientific application domains, e.g.,
– Fusion physics: given plasma equilibrium profiles in tokamaks/stellarators, determine device diagnostics.
– Microscopy: various kinds of microscopy -- electron, scanning tunneling, transmission electron and others; 

given a microscopy image, determine the material properties that produced the observed image.
– X-Ray crystallography: determine structure of target from diffraction patterns  produced by it upon 

bombardment by incident X-ray beam.
– Additive manufacturing: determining thermal parameters from target solidification microstructures in powder-

bed metal additive manufacturing.

• Short term goal: Develop extreme-scale ML framework to solve the inverse problem of material 
structure determination from neutron scattering experiments.

DAQ Machine
• Diffraction
• Scattering
• Crystallography
• …

Material 
Structure

DescriptionLearning

ExaLearn Approach 
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Predicting Material Structure from Neutron Scattering Data
Problem Definition

Use ML methods to solve the inverse problem of predicting material 
structures from neutron diffraction patterns called Bragg profiles.

Problem Scope 
• The problem lends itself as a rich template that can be generalized to 

other problem domains.

• Access to experimental data (NOMAD) for model validation studies.

• Initial target material is a perovskite called barium titanate (BaTiO3).

• Effort expected to be immediately impactful to a very large 
international user base at the Spallation Neutron Source (SNS).

Expensive 
Forward 

Simulation

Current Loop Refinement Method

Inferences are time-consuming, less accurate 
and model-driven

Proposed ExaLearn Method

Once trained, predictions are fast, more 
accurate and data-driven

Perovskite solar cells: https://www.researchgate.net/figure/Number-of-publications-resulting-from-the-search-of-perovskite-solar-cell-on-Web-of_fig3_317569861

Nanoscale-Ordered Materials Diffractometer (NOMAD)
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ExaLearn ML Pipeline 

Predict Symmetry 
of Structure

(Trained ExaLearn 
Classifier)

Instrument 
Information

Bragg Profile
Symmetry

Predict Internal 
Parameters  of 

Structure
(Trained ExaLearn 

Regressor)

• Lattice lengths
• Lattice angles
• Thermal parameters
• …

ExaLearn Pipeline for Material Structure Determination from Neutron Scattering Data 

There are seven 
crystallographic 

classes in all

No. of parameters 
vary depending on 

the symmetry class.
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Conclusions

Class Label Data Size Time Taken 
(in hr) No. of Cores

Cubic 125,000 120 2

Monoclinic 297,910 32 24

Triclinic 804,357 10 48

Tetragonal 998,584 96 48

GSAS 
Diffraction 
Simulation

GSAS 
Diffraction 
Simulation

GSAS 
Diffraction 
Simulation

GSAS 
Diffraction 
Simulation

Parallel Distributed 
Surrogate Simulations

<X1,y1>

<X2,y2>

<Xn,yn>

<Xi,yi>
….

….

Labeled Samples 
(Bragg Profiles)

Input 
Information

Bragg profile Parameters

Generation of Large-scale Training Data

• Instrument 
specifications

• Inter-ionic spacings
• Bond angles
• Thermal parameters
• …..

Training Data Generation

Labelled data generation for the full problem space 
and training deeper networks will require extreme 
scale compute time and resources – next steps!

Initial Evaluation of Regressors 

• Unconstrained Least Squares
• Non-Negative Least Squares
• Multi-Label Regressor with Gradient Boosted Trees
• Support Vector Machine – Regression
• Random Forests

Initial Design of Classifier 

• 1D-Convolution (16 kernels, width 3)
• 1D-Max Pooling (kernel width 2)
• 1D-Convolution (32 kernels, width 4)
• 1D-Max Pooling (kernel width 2)
• Fully Connected Layer (256 hidden neurons)
• ReLU (non-linear activation)
• Fully Connected Layer (3 output neurons, one for each class)
• Softmax (probability distribution over the 3 classes).

Best performance 
(about 90% accuracy 
with cubic symmetry)

Models were tested against 
annotated experimental data from 
the NOMAD diffractometer in SNS 

Learning to Predict Material Structure from Neutron Scattering Data, Workshop on Big Data, 
Tools and Methods (BTSD), IEEE Big Data 2019, Los Angeles, Dec 9-12, 2019.
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ExaLearn will work in collaboration with domain scientists to develop appropriate 
Uncertainty Quantification tools for the individual application pillars.

– Analyzed surrogate accuracy for increasing training data volumes, assessing generalization error and error in specific 
summary statistics of interest
• Preliminary results on combustion flame speed computations

– Planned: A-posteriori analysis of trained machine learning models, sensitivity analysis, robustness to data noise, NN 
architecture changes

UQ: A Critical Component of All Scientific Machine Learning Efforts

combustion NN surrogate for 
laminar flame speed

generalization error for 
increasing data volumes 

relative error on flame speed summary 
statistic for increasing data volume

Vision: Enabling probabilistic neural network training, with mean and variance estimates on network 
parameters, to assess predictive fidelity of surrogate models

NN=Neural NetworkTiernan Casey, Bert Debusschere, Sandia National Labs
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• Motivation: At large scales, simulation “efficiency” runs 
risk of being lower without careful steering. Or “wrong” 
“suboptimal” calculations may be performed without 
careful analysis of results generated. 

• Definition: ODED is an ML-enabled autonomous system 
to design and execute computations.

• End Results:
– To reach the objective earlier (with less computation)
– To produce a better result (within the computation budget)

• How It works:
– Iterative learning, simulation, and objective evaluation 
– Autonomous Control Module could be Reinforcement Learning, Active Learning, or other types of modules. 

Scientific 
Simulations
(MD, Cosmo...)

Autonomous 
Control Module
(RL, AL...)

Objective 
Evaluation

Objective-Driven Experimental Design
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Cosmology 

Simulations 

(MUSIC, COLA) 

Active Learning DL network

ODED Example: A Simplified Cosmology Problem–Parameter 

Estimation (Classification)

• Given a 3D sub-volume of the universe (from simulation), predict 

the parameter \omega-m \in [0.15, 0.40] (6 classes in total)

• Objective: Train an estimator with as few simulation 
runs as possible 

• CosmoFlow CNN model is used.

• Current Stage: 

– Using PyCOLA as the simulation software

– One-degree of freedom to control the simulation (\omega_0)

– On local 8-GPU compute node

• Future:

– Use a more expensive N-body simulation (e.g., GADGET)

– Expand to more degrees of parameters on leadership machines

– Provide a library to generalize the capability to other applications
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Creating a framework for organizing and 
distributing data is an important element of 
ExaLearn. To enable reproducible 
experiments, ExaLearn also is populating a 
searchable catalog of training data.

petreldata.net/exalearn

Navigate

Select

Subset
Download

Searchable Repository for Machine Learning Training Data
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dlhub.org

Online Access to ExaLearn Models
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Brief Overview of ExaLearn Control Pillar

• Goals
– Provide scalable control-related machine learning software for ECP applications
– Implement use case applications for demonstration and testing
– Run on exascale DOE Leadership class computing facilities

• Methods
– Using primarily reinforcement learning for now, but could expand to other methods
– Science use case:  RL for temperature control for block copolymer self-annealing in light source 

experiments
– EXARL software framework for exascale reinforcement learning for science and benchmarking

• Collaboration
– Working toward adoption of ECP ExaAM (additive manufacturing) application
– Leverage related ECP application software (eg CANDLE hyperparameter optimization)
– ECP Proxy App project collaboration on RL proxy app 
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Control Problems in Science

Simulation

Accelerate sampling in a 
simulation via search, to reduce 
computation required for solution

Experiment

Guide scientific experiments -
eg. block copolymer self-
annealing

Operation

• Control HPC facility
resource management 

• Control experimental 
facilities (eg x-ray beam )

• Control air, land or space 
vehicles 

Initial State

Target https://www.olcf.ornl.gov/summit

https://www.materialise.com/en/press-
releases/materialise-brings-simulation-for-
additive-manufacturing-to-production-floor
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Control Problems: Do You Have One For Us to Scale?
Characteristics of control problems:  

actions to take to get to different states, target state

Complex control problems may have:
• many different possible actions and/or states 
• complicated trade-offs 
• conditional behavior 
• complex goal and subgoal relationships 
• nuances in the order of actions taken  
• long-term rewards that may not be immediately obvious

Examples of everyday
complex control problems:
• Game playing (Go, Atari)
• Autonomous vehicle control
• Robotic control
• Factory control

(Reference: http://opendeeptech.com/alphago-googles-artificial-intelligence)

(Reference: https://robohub.org/deep-learning-in-robotics/)(Reference: ipam.ucla.edu/programs/workshops/autonomous-vehicles/)

http://opendeeptech.com/alphago-googles-artificial-intelligence
https://robohub.org/deep-learning-in-robotics/
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Adaptive Illumination
• SLAC/Stanford use case, training data and RL system 

(D. Ratner, J. Betterton, M. Kochendorfer)

• AI use case: exploit image sparseness to improve 
acquisition time/X-ray dose/resolution by adaptively 
controlling acquisition.

• Impact:  Reduced imaging needed (shorter experiment 
time) at both synchrotron and XFEL light sources.

• Example:

Additive Manufacturing
• ExaAM use case, training data available (MEUMAPPS 

sim) 

• AI use case: Predict next steady-state behavior in the 
solidification of a metal to guide real-time annealing in line 
with the experiment. 

• Impact: 
– Reduce expensive simulations because can predict the next 

steady state response for a thermal stimulus.
– Model system more dynamically to achieve desired end state.

• Example:
Simulation of directional 
solidification of a ternary Ni-Fe-
Nb alloy. (left) The metal is in an 
unsteady state (dotted line) when 
transient behavior (slowed cooling 
rate) is introduced after the initial 
steady state was achieved.  

Image courtesy of R. Balasubramaniam

Close-up of quills

Archaeopteryx feathers and bone 
chemistry fully revealed via 
synchrotron imaging. (left) 
Image courtesy of U. Bergmann et al.

LA-UR-19-27506

Upcoming Control Use Cases for FY20 and Beyond



42

Easily eXtendable Architecture for Reinforcement Learning 
(EXARL)

• EXARL: scalable RL framework for 
scientific environments

• Extends OpenAI Gym’s environment 
registry to agents

• Dynamic multi-node environments
• Abstract classes to mandate 

necessary functionality
• Easy to register new agents and 

environments
• Supports different hardware and 

software infrastructures
– Use existing prevalent 

infrastructure
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Future Vision: Integrate the Four Machine Learning Types in 
ExaLearn for a Single Application 

Example: Tokamak Plasma Fusion

• Generate goal-driven surrogate models for 
dynamic processes to replace expensive whole 
device simulations (WDM)

• Use these surrogates to generate training data 
for a RL-based real-time controller

• Apply pipeline from the inverse problems pillar 
to predictions plasma equilibria configurations 
in tokamaks and stellarators

• Apply tools from the design pillar to optimize 
tokamak design and control policy

• EXAWIND: Exascale Predictive Wind Plant 
Flow Physics Modeling

• Combustion-Pele: Transforming Combustion 
Science and Technology with Exascale 
Simulations

• ExaSMR: Coupled Monte Carlo Neutronics 
and Fluid Flow Simulation of Small Modular 
Reactors

• MFIX-Exa: Performance Prediction of 
Multiphase Energy Conversion Device

• WDMApp: High-Fidelity Whole Device 
Modeling of Magnetically Confined Fusion 
Plasmas

• WarpX: Exascale Modeling of Advanced 
Particle Accelerators
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Big Data Need Big Theory, Too

• Coveney, Dougherty, Highfield: “We point out the weaknesses of pure big data approaches…. 
No matter their ‘depth’ and the sophistication of data-driven methods, such as artificial neural 
nets, in the end they merely fit curves to existing data. Not only do these methods invariably 
require far larger quantities of data than anticipated by big data aficionados in order to produce 
statistically reliable results, but they can also fail in circumstances beyond the range of the data 
used to train them because they are not designed to model the structural characteristics of the 
underlying system. We argue that it is vital to use theory as a guide to experimental design 
for maximal efficiency of data collection and to produce reliable predictive models….”
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Thank You


