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σEXP = wDR ⊗ wQED ⊗ σQCD
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The goals

Build a theory-free MCEG

Map out particles correlations without biases
from approximated theory

MCEG as a data storage utility
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Replace Nature → Pythia for validation

Ignore detector effects to start

Find a suitable “image” representation for the
events
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Challenges
Find optimal data representation
→ what is the image of an event?

How to make the GAN to learn the
features of the event? → CNN

How to escalate from low to higher multiplicities?
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Summary and outook
It is possible to train a GAN at the event level
to build a MCEG

The current design provides a blueprint for a
generator with higher multiplicity
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encouraging
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complementary tool to theory-based MCEGs
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