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What We Have Achieved
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A GAN trained with pseudo data generated by Pythia
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See following talks by Luisa Valesco, Yaohang Li, Yasir Alanazi



How the Real World is Measured
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[Figure from CLAS12 website] [Figure from SoLID preCDR]

We “see” the real world with detectors. 
However … 
•We cannot “see” everything: only long-lived particles within the acceptance of our “eyes” 
•What we “see” may not from the vertex: multiple scatterings, beam halo, cosmic rays, … 
•What we “see” is not the same as at the vertex: information changes on the path 
•What we “see” always comes with uncertainties: resolution 
•What we “see” may not be what enters our “eyes”: false track, mis-PID, …



Acceptance and Efficiency
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SIDIS electron acceptance & efficiency

CLAS12 electron acceptance
Detectors only cover part of the phase space 
Particles generated at the vertex may not be detected 
• the angle is out of the detector coverage 
• momentum/energy is below the threshold 
• decay before arriving the detector 
• scatter with materials on the path 
• …

The yield of events are reduced. 
The shape of the distribution may also change. 

[Acceptance files by Z.W. Zhao]

SoLID



Acceptance and Efficiency
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Example: (SIDIS) 
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Black: events at vertex 
Red: apply CLAS12 acceptance 
Blue: apply SoLID acceptance



Resolution
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The momenta and angles of particles recorded by the detectors have uncertainties. 
• position and energy resolution of the caliometer 
• knowledge of the magnetic field 
• track reconstruction 
• radiative energy loss 
• scattering with materials on the path 
• … 

smeared with CLAS12 
and ALERT resolution

Example: eA → epKKX [H. Gao et al., Phys. Rev. C 95, 055202 (2017)]



Time Resolution
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When identifying multiple particles in the final state 
• particles from different events may be counted as from a single event 
• “coincidence” is understood within the time resolution 

Example: SIDIS 
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Blue: real coincidence eπ 
Red: random coincidence eπ 



Particle Identification
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The particle type may be misidentified 
• statistically known, not event by event
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[From proposal E12-10-006D/E12-11-108B]

Example: eA → epKKX 

assume 2% pion are misidentified as kaon 



More Other Effects

11

• Cosmic rays 
• Scattering from the residue gas 
• Scattering from materials on the path, e.g. target cell, tracking detectors, … 
• False track 
• Radiative energy loss 
• … 



Summary
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• Goal: training with real data, distorted by detector effects, to develop a 
GAN to generator events at the vertex. 

• Challenge: some information is missing; recorded information is distorted 
and could be wrong. 

• Method: algorithms for inverse problems with multiple solutions; combine 
data from different experiments; a NN-based detector simulation. 

Thank you!


