GAN from Pseudo Data to Real Data Inverse Problem for Detector Effects

A.I. for Nuclear Physics Workshop, March 05th, 2020

Tianbo Liu (対天博) Thomas Jefferson National Accelerator Facility

Workflow of UMCEG/ETHER

Workflow of UMCEG/ETHER

What We Have Achieved

A GAN trained with pseudo data generated by Pythia

Inclusive DIS (single particle GAN)

See following talks by Luisa Valesco, Yaohang Li, Yasir Alanazi

How the Real World is Measured

We "see" the real world with detectors. However ...

- •We cannot "see" everything: only long-lived particles within the acceptance of our "eyes"
- •What we "see" may not from the vertex: multiple scatterings, beam halo, cosmic rays, ...
- •What we "see" is not the same as at the vertex: information changes on the path
- •What we "see" always comes with uncertainties: resolution
- What we "see" may not be what enters our "eyes": false track, mis-PID, ...

[Figure from CLAS12 website]

Acceptance and Efficiency

Detectors only cover part of the phase space Particles generated at the vertex may not be detected

- the angle is out of the detector coverage
- momentum/energy is below the threshold
- decay before arriving the detector
- scatter with materials on the path

The yield of events are reduced. The shape of the distribution may also change.

Acceptance and Efficiency

Example: (SIDIS)

Resolution

The momenta and angles of particles recorded by the detectors have uncertainties. • position and energy resolution of the caliometer

- knowledge of the magnetic field
- track reconstruction
- radiative energy loss
- scattering with materials on the path

• •

Time Resolution

When identifying multiple particles in the final state

- particles from different events may be counted as from a single event
- "coincidence" is understood within the time resolution

Example: SIDIS Example: SIDIS Blue: real coincidence $e\pi$ Red: random coincidence $e\pi$ 10^{-1} 10^{-2} 10^{-2} 10^{-3} 10^{-4} 0^{-4}

al state ted as from a single event resolution

Particle Identification

The particle type may be misidentified

• statistically known, not event by event

Example: $eA \rightarrow epKKX$

assume 2% pion are misidentified as kaon

[From proposal E12-10-006D/E12-11-108B]

More Other Effects

- Cosmic rays
- Scattering from the residue gas
- Scattering from materials on the path, e.g. target cell, tracking detectors, ...
- False track
- Radiative energy loss
- •

Summary

- Goal: training with real data, distorted by detector effects, to develop a GAN to generator events at the vertex.
- Challenge: some information is missing; recorded information is distorted and could be wrong.
- Method: algorithms for inverse problems with multiple solutions; combine data from different experiments; a NN-based detector simulation.

