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Introduction
• Goal: Compute hadron structure properties from QCD 

• Parton distribution functions (PDFs) 

• Operator product: Mellin moments are local matrix elements that can be computed in 
Lattice QCD  

• Power divergent mixing limits us to few moments 

• Few years ago X. Ji suggested an approach for obtaining PDFs from Lattice QCD 

• First calculations already available 

• A new approach for obtaining PDFs from LQCD introduced by A. Radyushkin  

• Hadronic tensor methods
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PDFs: Definition

5

We denote bare light-front PDFs by f (0)(⇠). Light-front PDFs are frequently represented by

f (0)
j/N (⇠), where j denotes the quark flavor and N the nucleon species, but here we will be considering

only non-singlet distributions, for which we can neglect mixing between parton species, and work

with su�cient generality that the nucleon species is not relevant to our discussion. We use light-

front coordinates, (x+, x�,xT) such that x± = (t ± z)/
p
2, and define ⇠ = k+/P+. We use ⇠

to distinguish this variable from the Bjorken-x parameter that characterizes the kinematics of

scattering experiments and is given in terms of the experimental momentum transfer Q2 = �q2

and hadron momentum P by x = Q2/(2P · q). The bare PDF is defined as [3]

f (0)(⇠) =

Z
1
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Here T is the time-ordering operator,  is a quark field, and the subscript C indicates that the

vacuum expectation value has been subtracted (in other words, only connected contributions are

included). The operator W (!�, 0) is the Wilson line,

W (!�, 0) = P exp

"
�ig0

Z !�

0
dy�A+

↵ (0, y
�,0T)T↵

#
, (2)

with P the path-ordering operator, g0 the QCD bare coupling, and Aµ = Aµ
↵T↵ the SU(3) gauge

potential with generator T↵ (summation over color index ↵ is implicit). The target state, |P i, is a

spin-averaged, exact momentum eigenstate with relativistic normalization

hP 0
|P i = (2⇡)32P+�
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We define the moments of bare PDFs as

a(n)0 =

Z 1

0
d⇠ ⇠n�1

h
f (0)(⇠) + (�1)nf

(0)
(⇠)

i
=

Z 1

�1
d⇠ ⇠n�1f(⇠), (4)

where f
(0)

(⇠) is the anti-quark PDF and the second equality follows from the relation of the quark

to anti-quark PDFs

f (0)(�⇠) = �f
(0)

(⇠), (5)

which holds for the bare distributions if the quark and anti-quarks fields are classical, or quantized

using light-front quantization [33].

We can relate these bare moments, a(n)0 , to matrix elements of twist-two operators via

D
P |O

{µ1...µn}

0 |P
E
= 2a(n)0 (Pµ1 · · ·Pµn � traces) . (6)
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Light-cone PDFs:
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Moments:
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Local matrix elements:
6

Here the bare twist-two operators are

O
{µ1···µn}

0 = in�1 (0)�{µ1Dµ2 · · ·Dµn}
�a

2
 (0)� traces . (7)

In these expressions the braces denote symmetrization, Dµ is the symmetric covariant derivative,

�a are SU(2) flavor matrices, and the subtraction of the trace terms ensures that the operator

transforms irreducibly under SU(2)L ⌦ SU(2)R.

B. Renormalized PDFs

To this point we have considered the bare light-front PDFs, with the understanding that such

objects are evaluated with some regulator that renders the bare distributions finite. We now intro-

duce renormalized light-front PDFs. We stress that in this section we consider a renormalization

scheme that respects rotational symmetry and, for definiteness, one can have in mind the MS

scheme. Complications will arise if a regulator that breaks rotational invariance, such as the lat-

tice regulator, is used. We do not discuss such complications here, because we will avoid explicit

computations of moments at finite lattice spacing. All correlation functions computed on the lattice

can be renormalized and extrapolated to the continuum limit, provided that no power divergent

mixing exists. In the next section, we propose a smeared correlation function that does not have

power-divergent mixing.

In general, renormalized light-front PDFs are written in terms of a kernel, Z(⇣/⇠, µ), as

f(⇠, µ) =

Z 1

x

d⇣

⇣
Z

✓
⇣

⇠
, µ

◆
f (0)(⇣), (8)

where µ is some renormalization scale. We do not need to consider mixing between parton species

for non-singlet distributions. In terms of the renormalized light-front PDF, the renormalized Mellin

moments are

a(n)(µ) =
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f(⇠, µ) + (�1)nf(⇠, µ)

⇤
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d⇠ ⇠n�1f(⇠, µ), (9)

which can be related to matrix elements of renormalized twist-two operators, O
{⌫1...⌫n}(µ) =

ZO(µ)O
{⌫1...⌫n}
0 , via

D
P |O

{⌫1...⌫n}(µ)|P
E
= 2a(n)(µ) (P ⌫1 · · ·P ⌫n � traces) . (10)

This relation holds provided the light-front PDFs and twist-two operators are renormalized in the

same scheme [33].



Pseudo-PDFs
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III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider spacelike separa-
tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
1

�1

dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
1

�1

dy Q(y, P ) eiy⌫ . (9)

Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows

Q(y, P ) =
1

2⇡

Z
1

�1

d⌫ e�iy⌫
M(⌫, ⌫2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

Ê(0, z;A) = P exp


�ig

Z z

0
dz0µ A

µ
↵(z

0)T↵

�

Unpolarized PDFs proton:

z 0

p p
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↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1
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dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product
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) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
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-dependent factor K(k2
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), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2
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Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form
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Lorentz decomposition:

Collinear PDFs: Choose 
z = (0, z�, 0)

p = (p+, 0, 0)
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III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider spacelike separa-
tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
1

�1

dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
1

�1

dy Q(y, P ) eiy⌫ . (9)

Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows
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It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]
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It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!
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Definition of PDF: 

A. Radyushkin Phys.Lett. B767 (2017)
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Q(⌫, µ) is called the Ioffe time PDF
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Matching to MS

Mp(⌫, z
2) =

Z 1

0
d↵ C(↵, z2µ2,↵s(µ))Q(↵⌫, µ) +O(z2⇤2

qcd)



Lattice QCD calculation:

Choose 
z = (0, 0, 0, z3)

�0

Chosing       was also suggested also by M. Constantinou at GHP2017 based  
on an operator mixing argument for the renormalized matrix element

Alexandrou et al arXiv:1706.00265

A. Radyushkin Phys.Lett. B767 (2017)

p = (p0, 0, 0, p3)

Mp(⌫, z
2
3) =

1

2p0
M0(z3, p3)

Obtaining only the relevant 

�0

On shell  equal time matrix element  
computable in Euclidean space 
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Consider the ratio

UV divergences will cancel in this ratio resulting a 
renormalization group invariant (RGI) function

Mp(0, 0) = 1 Isovector matrix element

M(⌫, z23) ⌘
Mp(⌫, z23)

Mp(0, z23)

The lattice regulator can now be removed

Mcont(⌫, z23) Universal independent of the lattice



Matching to MS computed at 1-loop
Radyushkin Phys.Rev. D98 (2018) no.1, 014019 
Zhang et al. Phys.Rev. D97 (2018) no.7, 074508 

Polynomial corrections to the Ioffe time PDF may be suppressed 

A. Radyushkin Phys.Lett. B767 (2017)

B. U. Musch, et al   Phys. Rev. D 83, 094507 (2011)
M. Anselmino et al. 10.1007/JHEP04(2014)005 

which using our conventions becomes
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µ
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/4)B̃(x⌫) + D̃(x⌫)
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, (10)

where
B̃(x) =

Z 1
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d↵B(↵) [cos(x↵)� cos(x))] (11)

and
D̃(x) =

Z 1

0

d↵D(↵) [cos(x↵)� cos(x)] . (12)

Note the the new kernel depends on the product ⌫x and not on x and ⌫ separately. With
this new kernel we can now write a direct relation between the pseudo-Ioffe time PDF and
the the momentum space PDF as following:

M(⌫, z2) =

Z 1

0

dx qv(x, µ)K(x⌫, z2µ2) +
1X

k=1

Bk(⌫)(z
2)k . (13)

One can evaluate analytically the B̃(x) and D̃(x) integrals resulting in

B̃(x) =
1� cos(x)

x2
+ 2 sin(x)

xSi(x)� 1

x
+

3� 4�E
2

cos(x) + 2 cos(x) [Ci(x)� ln(x)] , (14)

where Si(x) and Ci(x) are the sine and cosine integrals respectively and,

D̃(x) = xIm
⇥
e
ix

3F3(111; 222;�ix)
⇤
�

2� (2 + x
2) cos(x)

x2
, (15)

where 3F3(111; 222; x) is the generalized Hypergeometric function.

A. Numerical Evaluation of the Convolution Integrals

In order to implement numerically the convolution required for the matching, we need
to worry about both the precision of the integration as well as the computational efficiency.
Although the although some of the integrals can be done analytically as indicated above, the
resulting special functions are difficult to evaluate accurately and in fact the Hypergeometric
function requires multi-precision arithmetic resulting in expensive computations. Further-
more, as the Ioffe time ⌫ becomes large, simple integration rules such as the trapezoid rule
break down even with O(103) integration points. Furthermore, potential divergence of the
PDF at x = 0 further complicates numerical evaluation of the final convolution integral over
x. These numerical instabilities arise from the fact that the integrand is oscillatory with a
frequency of oscillations that is ⌫/2⇡. One way to address the problem is to use an improved
trapezoid rule just like the rule we used in the "moments" paper. Unfortunately, this still
results in special functions but at least in may give us better precision.
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β=6.1 a=0.125fm  dynamical fermions Nf=2+1
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FIG. 15. Imaginary part of M(⌫, z23) for z3/a = 1, 2, 3, and 4.
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FIG. 16. Evolved data points for the imaginary part.

data points. Using ↵s/⇡ = 0.1, we calculate the “evolved”
data points corresponding to the function fM(⌫, z2

0). The
results are shown in Fig. 14. The evolved data points
are now very close to a universal curve.

In Fig. 15, we show the initial data points for the
imaginary part. The evolved data points constructed us-
ing the same ↵s/⇡ = 0.1 value are shown in Fig. 16.
Again, they are close to a universal curve. This analy-
sis indicates that the residual z2

3-dependence of M (⌫, z2
3)

at fixed ⌫ is compatible with the expected logarithmic
evolution at small z2

3 . Clearly this is an important fea-
ture of our calculation which needs to be further studied
as it will play an essential role in reliable extraction of
renormalized PDFs from this type of lattice calculations.

With a smaller lattice spacing, the use of perturbative
evolution may be justified in a wider region of ⌫. While
our data extend to rather large separations ⇠ 1 fm, we
find it instructive to use them as an example to illustrate
the trends generated by the perturbative evolution.
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FIG. 17. Data points for Re M (⌫, z23) with z3  10a evolved
to z0 = 2a as described in the text.

To this end, we applied the leading logarithm for-
mula (43) with z0 = 2a and ↵s/⇡ = 0.1 to our data
points with z3  6a. Assuming that evolution stops for
z3 & 6a (as indicated by our data), the data points with
7a  z3  10a were evolved to z0 using Eq. (43) with
z3 = 6a, The data points evolved in this way are shown
in Fig. 17.

Fitting the evolved points by cosine Fourier transforms
M(⌫; a, b) of the normalized N(a, b)xa(1�x)b-type func-
tions, we found that they may be described if one takes
a = 0.36(6) and b = 3.95(22). Treating z0 = 2a as the
MS scale µ = 1 GeV, one can further evolve the curve to
the standard reference scale µ2 = 4 GeV2 of the global
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FIG. 18. Curve for uv(x) � dv(x) built from the evolved
data shown in Fig. 17, and treated as corresponding to the
µ2 = 1 GeV2 scale; then evolved to the reference point µ2 = 4
GeV2 of the global fits.
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Figure 17. The nucleon valence distribution obtained from the ensemble a127m415 fit to
the form used by the JAM collaboration in Eq. (4.4). The �2/d.o.f. for the fit with all the
data is 2.5(1.5). The uncertainty band is obtained from the fits to the jackknife samples of the
data. The resulting fits are compared to phenomenologically determined PDF moments from
the NLO global fit CJ15nlo [60], and the NNLO global fits MSTW2008nnlo68cl_nf4 [63] and
NNPDF31_nnlo_pch_as_0118_mc_164 [64] all evolved to 2 GeV.
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Figure 18. The nucleon valence distribution obtained from the ensemble a127m415L fit to
the form used by the JAM collaboration in Eq. (4.4). The �2/d.o.f. for the fit with all the
data is 2.1(6). The uncertainty band is obtained from the fits to the jackknife samples of the
data. The resulting fits are compared to phenomenologically determined PDF moments from
the NLO global fit CJ15nlo [60], and the NNLO global fits MSTW2008nnlo68cl_nf4 [63] and
NNPDF31_nnlo_pch_as_0118_mc_164 [64] all evolved to 2 GeV.

the normalization explicitly fixes the value to 1. This hope if further supported by the
fact that the results from both lattice spacings are statistically consistent with each other
in this region.

In order to study the discretization effects, the real component of the reduced pseudo-
ITD calculated on ensembles a094m400 and a127m440, which are of approximately the
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PDF reconstruction

PDFs cannot  be directly computed

PDFs can only be reconstructed from matrix elements 
Just they are obtained from cross-sections

Reason: Fourier transform cannot be done with limited data

work done with: Joe Karpie, Alexander Rothgopf, Savvas  Zafeiropoulos 



which using our conventions becomes
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where
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Z 1
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d↵B(↵) [cos(x↵)� cos(x))] (11)

and
D̃(x) =

Z 1

0

d↵D(↵) [cos(x↵)� cos(x)] . (12)

Note the the new kernel depends on the product ⌫x and not on x and ⌫ separately. With
this new kernel we can now write a direct relation between the pseudo-Ioffe time PDF and
the the momentum space PDF as following:

M(⌫, z2) =

Z 1

0

dx qv(x, µ)K(x⌫, z2µ2) +
1X

k=1

Bk(⌫)(z
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One can evaluate analytically the B̃(x) and D̃(x) integrals resulting in

B̃(x) =
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x2
+ 2 sin(x)

xSi(x)� 1

x
+
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where Si(x) and Ci(x) are the sine and cosine integrals respectively and,
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⇥
e
ix
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2� (2 + x
2) cos(x)

x2
, (15)

where 3F3(111; 222; x) is the generalized Hypergeometric function.

A. Numerical Evaluation of the Convolution Integrals

In order to implement numerically the convolution required for the matching, we need
to worry about both the precision of the integration as well as the computational efficiency.
Although the although some of the integrals can be done analytically as indicated above, the
resulting special functions are difficult to evaluate accurately and in fact the Hypergeometric
function requires multi-precision arithmetic resulting in expensive computations. Further-
more, as the Ioffe time ⌫ becomes large, simple integration rules such as the trapezoid rule
break down even with O(103) integration points. Furthermore, potential divergence of the
PDF at x = 0 further complicates numerical evaluation of the final convolution integral over
x. These numerical instabilities arise from the fact that the integrand is oscillatory with a
frequency of oscillations that is ⌫/2⇡. One way to address the problem is to use an improved
trapezoid rule just like the rule we used in the "moments" paper. Unfortunately, this still
results in special functions but at least in may give us better precision.

2

which using our conventions becomes

K(x⌫, z2µ2) = cos(x⌫)�
↵s

2⇡
CF

h
ln(e2�E+1

z
2
µ
2
/4)B̃(x⌫) + D̃(x⌫)

i
, (10)

where
B̃(x) =

Z 1

0

d↵B(↵) [cos(x↵)� cos(x))] (11)

and
D̃(x) =

Z 1

0

d↵D(↵) [cos(x↵)� cos(x)] . (12)

Note the the new kernel depends on the product ⌫x and not on x and ⌫ separately. With
this new kernel we can now write a direct relation between the pseudo-Ioffe time PDF and
the the momentum space PDF as following:

M(⌫, z2) =

Z 1

0

dx qv(x, µ)K(x⌫, z2µ2) +
1X

k=1

Bk(⌫)(z
2)k . (13)

One can evaluate analytically the B̃(x) and D̃(x) integrals resulting in

B̃(x) =
1� cos(x)

x2
+ 2 sin(x)

xSi(x)� 1

x
+

3� 4�E
2

cos(x) + 2 cos(x) [Ci(x)� ln(x)] , (14)

where Si(x) and Ci(x) are the sine and cosine integrals respectively and,

D̃(x) = xIm
⇥
e
ix

3F3(111; 222;�ix)
⇤
�

2� (2 + x
2) cos(x)

x2
, (15)

where 3F3(111; 222; x) is the generalized Hypergeometric function.

A. Numerical Evaluation of the Convolution Integrals

In order to implement numerically the convolution required for the matching, we need
to worry about both the precision of the integration as well as the computational efficiency.
Although the although some of the integrals can be done analytically as indicated above, the
resulting special functions are difficult to evaluate accurately and in fact the Hypergeometric
function requires multi-precision arithmetic resulting in expensive computations. Further-
more, as the Ioffe time ⌫ becomes large, simple integration rules such as the trapezoid rule
break down even with O(103) integration points. Furthermore, potential divergence of the
PDF at x = 0 further complicates numerical evaluation of the final convolution integral over
x. These numerical instabilities arise from the fact that the integrand is oscillatory with a
frequency of oscillations that is ⌫/2⇡. One way to address the problem is to use an improved
trapezoid rule just like the rule we used in the "moments" paper. Unfortunately, this still
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The inverse problem:

Leading order in as  it is just a cosine transform.

We used a toy model to inversigate inversion algorithms



geometry and a set of activation functions, the thresholds and weights can be chosen for
the network to construct any continuous function. This feature allows a perceptron network
to be used as a model independent parameterization of a function to describe experimental
data. For the case of reconstructing the rescaled PDF h(x), which is a single valued function
with a single argument, the geometry is restricted to have N1 = 1 and NL = 1.

...

... . . . ...
x

⇠(2)1

⇠(2)2

⇠(2)N2

⇠(3)1

⇠(3)N3

⇠(L�1)
1

⇠(L�1)
NL�1

q(x)

Input layer Ouput layer

1 � N2 � N3
. . . NL�1 � 1

Hidden layers

FIG. 4: A neural network can be used as a general parameterization of an unknown function from
IRN1 ! IRNL . For the case of a PDF, a single valued function of a single argument, the input and
output layers have only one neuron.

A neural network can be used to perform a regression by choosing the thresholds and
weights with a supervised training procedure. In a supervised training procedure, the weights
and thresholds are modified to minimize some error function, which describes the difference
between the response of the neural network and some desired output. When using a neural
network to perform a regression, a common choice of error function is a �2 function, e.g.

�2({w}, {✓}) =
NX

k=1

�
Mk �

Z 1

0

Kk(x)h(x; {w}, {✓})dx
�2
/�2

k , (42)

where Mk are N data points with standard deviations �k and h is the output layer of the
neural network given an input layer x, synapsis weights {w}, and neuron thresholds {✓}.
In the case of a global minimum of �2 which is significantly smaller than any other local
minima, then those values of {w} and {✓} will result in a good representation of the PDF.
Due to the complexity of the parameterization, there exists a number of local minima who
have rather small values of �2 as well as many degenerate minima from the symmetries of
the neural network layout.

These roughly equivalent minima can be found and selected from by a procedure such
as a genetic algorithm. A genetic algorithm is an iterative process based upon the idea of
natural selection. Each iteration, also called a generation, begins with a sample of possible
networks, called a population. A fitness function is evaluated on each of the networks, in
this case the training’s error function. Those networks which are the least fit, e.g. largest �2,
are removed from the population. The surviving population is then mutated by changing
their parameters, e.g. weights and thresholds, to create the starting population for a new
generation. This procedure is iterated for enough generations that a final population covers
a sufficient number of minima with sufficiently small values of the error function.

The genetic algorithm used in this study is based upon simulated annealing. The initial
population is created from N0

rep sets of initial weights and thresholds which are generated
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Neural networks as fitting form

Methodology used by NNPDF

h(x)

q(x) = N(a,b) xa (1-x)b h(x)

Loss function

Covariance can be added
L(Mlat,Mmodel) = (|Mlat �Mmodel|)2

<latexit sha1_base64="0paFI9t+0pmaxxWOMe+abpLdYWE=">AAACQXicbVBLS8NAGNzUV62vqEcvi0VoQUtSBb0IRS8eFCrYBzQ1bDabdunmwe5GKGl+nZf+BX+CFxEvCl5M2njoY2BhdmaW/b6xAkaF1LQ3Jbeyura+kd8sbG3v7O6p+wdN4Ycckwb2mc/bFhKEUY80JJWMtANOkGsx0rIGt6nfeiFcUN97ksOAdF3U86hDMZKJZKpWZGDE4H1cigwXyX56eYjNiCEZn8J/KUol17cJi8vwGpZGi2F4tiw9Kj9XTbWoVbQJ4CLRM1IEGeqmOjZsH4cu8SRmSIiOrgWyGyEuKWYkLhihIAHCA9Qj0aSBGJ4kkg0dnyfHk3CizuSQK8TQtZJkOqSY91JxmdcJpXPVjagXhJJ4ePqREzIofZjWCW3KCZZsmBCEOU0mhLiPOMIyKb2QrK7PL7pImtWKfl6pPl4UazdZCXlwBI5BCejgEtTAHaiDBsBgDD7AN/hRXpV35VP5mkZzSvbmEMxA+f0DkA6wqg==</latexit>



• Implementation in MATLAB 

• No gradient search algorithm 

• Start from an ensemble (replicas) of  random guesses for the network 
parameters 

• Eliminate the worst performers and randomize sligthly the good 
onces 

• Repeat optimization cycle until a predefined number of replicas 
survive 

• Typically obtain loss function very close to zero 

• Final result is obtained as average over replicas 

• Variation over replicas represent the uncertainty
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FIG. 10: The genetically trained neural nets. The blue band is the original data. The red band
is the Reconstructed PDF with statistical and systematic errors. The left column is with NNPDF
data. The right column is with modified data. The first row has a network geometry of 1-3-1.
The second row has a geometry of 1-4-1. The third row has a geometry of 1-2-2-1. JK: The final
curves look significantly better for the fake data than one might expect from the wildness of the
final population..

C. Bayesian Analysis

Finally, mock data tests of the Bayesian strategy outlined above are carried out to de-
termine the feasibility of extracting the x-space PDF q(x) from the Ioffe-time data M(⌫)
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Summary
• Methods for obtaining parton distribution from Lattice QCD have 

now emerged 

• Obtaining the PDFs from lattice data amounts to a solution of an  
inverse problem similar to the one solved on the experimental data 

• NNPDF approach applied on mock data produces interesting 
results 

• Future: Collaborate with NNPDF to perform a detailed study for 
extracting PDFs from our lattice QCD data 

• Work in progress 

• Implementation of NLO curnel in TensorFlow 

• Investigate other AI inspired methods for solving the inverse 
problem at hand


