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(FAT-GAN) architecture for simulation of electron-
proton scattering events
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Generative Adversarial Network (GAN)

▪ Generative Adversarial Networks (GAN)

– Introduced by Ian Goodfellow et al. in 2014

– Deep neural network architectures comprised of two nets

▪ A Generator

▪ A Discriminator

– Both nets are trying to optimize a different and opposing loss function in a 
zero-sum game

▪ Potential of GAN

– Can be trained to mimic any distribution of data

– Create worlds eerily similar to our own in any domain

“The most interesting idea in the last 10 years in machine learning” – Yann LeCun
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General Architecture of GAN
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The Power of GAN

▪ Can be trained to mimic any distribution of data

▪ Applications

– Artificial Arts

– Virtual Reality

– New Characters

– Artificial Music
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GAN-based Event Generators

▪ Learning from real electron-proton 
scattering data

– Capture rich underlying distributions 
over data

▪ Difficult to model using explicit 
parameters

▪ Faithfully reproducing particle 
reaction events

– No assumptions on femtometer-scale 
physics theory

▪ Overcome the limitations of MCEGs
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Problems in Training a GAN

▪ Training a GAN is notoriously difficult

– Perfect Discriminator

– Mode Collapse

– Non-convergence

– Imbalance Generator and Discriminator Training

– Model parameter oscillation

– Destabilization

– Vanishing gradient
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Too Perfect Discriminator

Slide Credit: University of Waterloo, M. Li
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Mode Collapse

▪ Generating the same sample
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Additional GAN Challenges for Physical Event Generators

▪ Precise Event Feature Distributions

– Replicate the nature of particle reactions faithfully

▪ Obeying the fundamental Physics Laws

– Energy Conservation

– Momentum Conservation
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GAN for Inclusive Events

▪ Only learns how to generate specific kinds of particles

– Instead of the whole spectrum of particles in one event

▪ Single electron

▪ Electron + Prion
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Direct Simulation GAN

▪ Directly learn from electron three-momentum vector (px, py, pz)
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Direct Simulation GAN (cont.)

▪ Inter-correlation between physical quantities
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Momenta Distributions of Electrons



- 14 -

Feature-Augmented Transformed GAN (FAT-GAN)

▪ FAT-GAN

– Features Transformation

▪ Select generated features

– Not necessarily meaningful physics properties

▪ Easier to be generated by the generator

– Features Augmentation

▪ Expand feature space

▪ Improve sensitivity of the discriminator

– Maximum Mean Discrepancy (MMD)

▪ Improve Distribution Match

– Wasserstein Loss

▪ Reduce the chance of mode collapse

▪ Enhance GAN convergence
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Features Transformation

▪ Conversion to eliminate sharp edges

▪ Guarantee no generation of non-physical electrons
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Features Augmentation

▪ Augment the Feature Space to improve the Sensitivity of Discriminator

pypx pz

Transformation & Augmentation

px py T(pz) pz pT E pz/pT
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Wasserstein GAN

▪ Discriminator

– No longer a direct critic of telling the fake samples apart from the real ones

– Tries to bring 𝒙𝑮 distribution closer to 𝒙𝒕𝒓𝒖𝒆 distribution

▪ Wasserstein Loss

𝑫𝒍𝒐𝒔𝒔 = 𝑬 𝑫 𝒙𝒕𝒓𝒖𝒆 − 𝑬 𝑫 𝒙𝑮
𝑮𝒍𝒐𝒔𝒔 = −𝑬(𝑫 𝒙𝑮 )
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Wasserstein Distance vs. JSD
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Maximum Mean Discrepancy (MMD)

▪ MMD

– A kernel-based two-sample test to compare two distributions 

– Determine if the two sets of samples are drawn from different distributions

– is a Gaussian kernel
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FAT-GAN Architecture

▪ Discriminator Loss

▪ Generator Loss
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Comparison between Representations in Cartesian Coordinates 
and Spherical Coordinates

▪ Representation in Cartesian Coordinates [FAT-GAN (Cart)]

▪ Representation in Spherical Coordinates [FAT-GAN (Spher)]
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Distributions of Generated Physical Properties
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Features Inter-correlations
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FAT-GAN for Two Particles (Electron + Prion)
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Summary

▪ GAN-based Event Generator

– Challenge: Complicated patterns in physics property distributions

– FAT-GAN Features are the KEY

▪ Not necessary using meaningful physics properties as generated features

▪ Use features that are easy to generate by the generator

▪ Augment feature space to make the discriminator sensitive

▪ Success so far

– We can model the inclusive electron with high precision

– We can model the inclusive electron and pion with high precision
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Codes: https://github.com/JeffersonLab/FAT-GAN

https://github.com/JeffersonLab/FAT-GAN
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