Machine learning for LQCD:
ensemble generation
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Generate QCD gauge fields

Generate field configurations ¢(z) with probability
Plé(x)] ~ e Slo(a)]

Hamiltonian/Hybrid Monte Carlo

correlated
A
( \
B e S P R Y i
“ Y,
Y
burn-in (discard) sample every nth: ~p(¢)

Burn-in time and correlation length dictated by Markov chain
‘autocorrelation time’: shorter autocorrelation time implies less
computational cost



Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive

Lattice spacing * 0

Number of
updates to change
fixed physical
length scale

- oo

“Ceritical slowing-down”
of generation of uncorrelated samples



Generate QCD gauge fields

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

“Ciritical slowing-down”

of generation of uncorrelated samples

Autocorrelation measure

. 1 Tmax
Ty = 5 + lim BO(T)

B L@/ Critical
To — Qo exponent

Correlation of observable (D on
configurations separated by 7 Markov
Chain steps

topological
charge

[Schaefer et al. / ALPHA C%)ration 1009.5228]
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Machine learning QCD

Accelerate gauge-field generation via ML

@ Multi-scale algorithms:

barallels with image recognition
Shanahan et al., PRD 97,094506 (2018)

@ Generative models to replace Hybrid
Monte-Carlo

barallels with image generation

Albergo et al.,, PRD 100,034515 (2019)
[MIT + Google DeepMind, arXiv:2002.02428]

Kanwar et al., MIT-CTP/518I
@ Hybrid approaches

Consider only approaches which rigorously
preserve quantum field theory in applicable limits



Machine learning QCD

Generative models for QCD gauge field generation
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Sampling gauge field configs

Generate field configurations ¢(z) with probability
Po(x)] ~ e~ 5140)
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ampling gauge field configs

Generate field configurations ¢(z) with probability
Po(x)] ~ e~ 5140)

Parallels with image generation problem
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Machine learning QCD

Ensemble of lattice QCD CIFAR benchmark image set
gauge fields for machine learning

643 x128 x 4 x Ne2x 2 - 32 x 32 pixels x 3 cols

=|0? numbers =~3000 numbers

~ 1000 samples ~ 60000 samples
Ensemble of gauge fields has | |
meaning © Each image has meaning
Long-distance correlations © Local structures are

are Important important

Gauge andltranslz}tloln— - Translation-invariance
invariant with periodic within frame

boundaries



Machine learning QCD

Ensemble of lattice QCD CIFAR benchmark image set
o for machine learning

© 32 x 32 pixels x 3 cols
=3000 numbers

L ong-distance correlaliong
are important

Gauge and translation- ~ Translation-inve
invariant with periodic within frame
boundaries



Generative flow models

Flow-based models learn a change-of-variables that transforms

a known distribution to the desired distribution
[Rezende & Mohamed 1505.05770]
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Easily sampled _ :
desired dist.



Generative flow models

Flow-based models learn a change-of-variables that transforms

a known distribution to the desired distribution
[Rezende & Mohamed 1505.05770]
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Many simple layers
composed to produce f

Approximates

Easily sampled _ :
desired dist.



Generative flow models

Choose real non-volume preserving flows:

[Dinh et al. 1605.08803) f Application of g-

Affine transformation of half of the variables:

© scaling by exp(s)
© translation by t

© sand t arbitrary neural networks depending on
untransformed variables only

Simple inverse and Jacobian
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Generative flow models

Choose real non-volume preserving flows:
[Dinh et al. 1605.08803]

Density can be
squished/stretched by

Affine transformation of half of the variables: change-of-variables

© scaling by exp(s) split \z;/ izlb_
© translation by t t,
© sand t arbrtrary neural networks depending on Ai

untransformed variables only - )
Can use physically-motivated
choices of variable splits
e.g. checkerboard building
correlations between nearest

Simple inverse and Jacobian

neighbours
A A —
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r(z Pr(P)
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Training the model

Target distribution 1s known up to normalisation

p(¢) =e>9)Z

Train to minimise shifted KL divergence: izang, g wang 1809.10188]

shift removes unknown

L(py) := Dgr(psllp) normalisation /

_ / [[d6;57(6) (08 ps(6) + 5(0))

\

allows self-training: sampling with respect to

model distribution p¢(¢)to estimate loss




Exactness via Markov chain

Guarantee exactness of generated distribution by forming a
Markov chain: accept/reject with Metropolis-Hastings step

Acceptance
probability

s T p—— (1 p(a" ) P(Qb'))

p(et) B(¢)

proposal independent
of previous sample

Markov
Chain

model
proposals




Exactness via Markov chain

Guarantee exactness of generated distribution by forming a
Markov chain: accept/reject with Metropolis-Hastings step

Acceptance
probability

p(0=1)|p(9) > True dist

o -
A(¢""",¢") = min (1 p(¢=D)B(¢)]) Model dist

-~

proposal independent
of previous sample

Markov
Chain

model
proposals




Fields via flow models
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generating samples is
"embarrassingly parallel”

Parameterize flow using Real
NVP coupling layers

Each layer contains

!

Training step

‘ Draw samples from model ‘
|

‘ Compute loss function ‘
|

‘ Gradient descent ‘

A\

arbitrary neural nets
sandt

Desired accuracy?

Markov chain using
samples from model

3

Save trained
model

_J

Summary chart: Tej Kanwar



Application: scalar field theory

First application: scalar lattice field theory

One real number ¢(x) € (—o0, 00) per lattice site x (2D lattice)

Action: kinetic terms and quartic coupling

> |
xZr

S(é) =3 (X 6(@)0(z, y)é(y) + smH(x)* + A¢<x>4>

> lattice sizes: L2 = {62, 82, 104, 122, |44} with parameters tuned for
analysis of critical slowing down

E1l E2 E3 E4 E5
B 6 8 10 12 14
m? —4 —4 —4 Y | —4
A 6.975 6.008 5.550 5.276 5.113
mpyL| 3.96(3)  3.97(5)  4.00(4) 3.96(5)  4.03(6)




Application: scalar field theory

First application: scalar lattice field theory

Prior distribution chosen to be uncorrelated

Gaussian: qb(:l:) N N(O, 1)

Real non-volume-preserving (NVP) couplings

* 8-12 Real NVP coupling layers

* Alternating checkerboard pattern for variable split

* NNs with 2-6 fully connected layers with [00-1024

hidden units
Train using shifted KL loss with Adam optimizer R L
i
* Stopping criterion: fixed acceptance rate in Metropolis- L5 -':h

Hastings MCMC L



Application: scalar field theory

First application: scalar lattice field theory

Compare with standard updating algorithms:‘local’, " HMC
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Application: scalar field theory

First application: scalar lattice field theory

Compare with standard updating algorithms:‘local’, " HMC

Count
104+ | B 62 ML
1(1)88 w B 62 HMC
107 _I_l—._l—'—-
1 L
104+ | B 102 ML
o0 B 102 HMC
19 —
104} I 142 ML
1000 B 142 HMC
100 ¢ —1_
10+
1 L I
0 20 40 60 30

Run length

Rejectance runs in the
Metropolis-Hastings
accept/reject step are
comparable to those in
Hamiltonian Monte-Carlo
tuned to same acceptance



Application: scalar field theory

First application: scalar lattice field theory
Compare with standard updating algorithms:‘local’, " HMC

Physical observables match
computed on ensembles
generated from ML model
and from standard methods

62 82 102 192 12 V

Two-point susceptibility Yo = Z Galz)
T

e 1 R
Ising limit energy E:E Z G.(f1)

0.05E. \ | | |
62 82 102 192 142 V



Application: scalar field theory

First application: scalar lattice field theory

Compare with standard updating algorithms:‘local’, " HMC
v/ Var(x2)

0.06: &
0.00f #
0.04¢

Uncertainties in physical
observables follow
statistical scaling as the
number of samples Is
Increased

0.03 |

0.02
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Application: scalar field theory

First application: scalar lattice field theory

Success: Critical slowing down Is eliminated

Cost:
51 O X2
| o G(0)
2 L
71:44(3)
1t 2
L -~
; [/().61(2),,’6 _ =
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0.5 7,0:31(2)
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(a) HMC ensembles
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(b) Local Metropolis ensembles

Up-front training of the model

Tint | OFE o G.0)
5: o xe A Acc
| i 50% ML models
A Q @.___ﬁ__.g
9! 7,-0.06(5)
'''''''''''''''' L_—E).T)I(T)'
L I T
I 70% ML models
0.51

6 s 10 12 u L
(c) Flow-based MCMC ensembles
Dynamical critical exponents
consistent with zero



Next steps: ML for LQCD

Target application: Lattice QCD for nuclear physics

|, Scale num

). Scale num

DEI” Of
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ﬁ
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C

IMensions

C

egrees of freedom

3. Methods for gauge theories

[MIT + Google DeepMind, arXiv:2002.02428]

AURORA

Aurora2| Early Science Project Awarded



Next steps: ML for LQCD

Target application: Lattice QCD for nuclear physics

Aurora2| Early Science Project Awarded



Incorporating symmetries

[MIT + Google DeepMind, arXiv:2002.02428]

Normalizing Flows on Tori and Spheres

Danilo Jimenez Rezende "' George Papamakarios “' Sébastien Racaniére "' Michael S. Albergo >

Gurtej Kanwar® Phiala E. Shanahan?® Kyle Cranmer >

Arbrtrarily flexible
model archrtectures
designed for compact

and connected e >
manifolds

(spet) 6

e.g., physics data on compact
domains OR robot arm
positions




Interdisciplinary applications

New bockfor Gl Ancient DNA illuminates

Molecular — Eeress

. z
genetics and C
' f f;!
drug design I A
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RESEARCH ARTICLE SUMMARY v f R
MACHINE LEARNING ‘ ‘ ’ ’

Boltzmann generators: Sampling > s bt
equilibrium states of many-body "
systems with deep learning M

Frank Noé*t, Simon Olsson*, Jonas Kéhler*, Hao Wu I |

3 Re -weight

H. Application: Multi-Link Robot Arm

As a concrete application of flows on tori, we consider
the problem of approximating the posterior density over
joint angles 6. ¢ of a 6-link 2D robot arm, given (soft)
constraints on the position of the tip of the arm. The possible
configurations of this arm are points in TS. The position 7,

ofajointk=1,..., 6 of the robot arm is given by
ry =7g_1+ | lx cos ZGJ- , g sin Zﬁj ,
J<k i<k
wihara v — (DN Sa tha macitinm vwihara tha ase 10 afGovad

S —




Joint software effort

Our codes exploit and extend We run on
existing ML software frameworks e CPUs

e Tensorflow 1 e GPUs

e Pytorch TensorFlow e TPUs

" 54 PYTHRCH

é('(‘g“ ‘4 Targeting exascale
nardware for

Active research projects into nuclear physics
training protocols: Orojects
* Pruning
o | ottery tickets AUROR A| Th
e [nitialisation frameworks
o




Outlook

IF a generative flow model can be trained for QCD

After the up-front cost of training the model, it Is
Cheap to generate an arbitrarily large ensemble
No need to store configurations, only the trained model

Volume scaling is tractable via hierarchical flow and transfer
learning approach

Cheap to re-train the model to move to nearby parameter values
(quark masses, beta)

i.e., if possible, this approach would have significant advantages, even if
initial training is expensive



Case study: Ab-initio Al Center

CAIFl: The Center for Artificial Intelligence
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Case study: Ab-initio Al Center

CAIFl: The Center for Artificial Intelligence
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Case study: Ab-initio Al Center

CAIFl: The Center for Artificial Intelligence
X" and Fundamental Interactions

Our Vision:  Advance fundamental physics and foundational Al
Build strong multidisciplinary collaborations
Close contact between early-career researchers
Intellectual freedom for CAIFI Fellows
Training and education at intersection of Physics and Al
Access to state-of-the-art computing resources
Advocacy for shared solutions across subfields

* Ab Initio Al for Theory Calculations
* Ab Initio Al for Experiments
% Ab Initio Al for Advancing Al



study: Ab-initio Al Center

CAIFl: The Center for Artificial Intelligence
X" and Fundamental Interactions
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Advisory Board Sl L
(Btiemma]l adbs ey Tennd) (Represents interests of all SIs)
To be abpointed All SIs have equal voting rights
pp )~~ Ratifies Management proposals
\
RS
e 2 LN
Institute Board 'S ]:
(Internal advisory board)
Bill Freeman (MIT) I\é[anagerlr)le(:lrlt
Cora Dvorkin (Harvard) Di ( .X(?]Clltw%hol y) MIT
James Halverson (Northeastern) [ > 1rec'tor. esse aler ( )
: o8 Deputy Director: Mike Williams (MIT)
Taritree Wongjirad (Tufts) -
ex-officio: ECEC Chair Institute Manager: To be hired
CB Chair, MIT-LNS Director, " \
Management Team o’
r T D
‘ J o’ Coordination Board
4 A Pae (Coordinates all CAIFI activities)
ECEC '¢' Chair: Matthew Schwartz (Harvard)
(Early Career & Equity) Ab Initio Al for Theory Calculations: Phiala Shanahan (MIT)
Chair: Tracy Slatyer (MIT) Ab Initio Al for Experiments: Philip Harris (MIT)
5 members, including post-docs Ab Initio Al for Advancing AI: Demba Ba (Harvard) CAIFI
and grad students Outreach: Brent Nelson (Northeastern) [me—gp- Outputs
\ ) Education & Workforce Development: Isaac Chuang (MIT) p
Knowledge Transfer: Todd Zickler (Harvard)
Post-doc Fellows: Marin Solja¢i¢ (MIT)
Community Building: Max Tegmark (MIT)
Resources: William Detmold (MIT)
L ex-officio: ECEC Chair, Management Team y

Modeled after nuclear/particle experimental collaborations:
Dedicated coordinator for each major activity
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