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Lattice QCD



Lattice QCD… what is it? 
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http://www.physics.adelaide.edu.au/cssm/lattice/

• Gauge field simulation from  
first principles  

• Discretized space-time  

• Finite volume with  
periodic conditions  

• Volume few times  
size of proton 
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Image credit: Carlos Jones/ORNL

Motivation for QCD 

Mass comes from QCD dynamics

Spectroscopy, scattering, PDFs,  

CKM matrix elements BSM spectroscopy,  

Phase transitions 

 



Importance sampling 
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⟨0 |π(t) π†(0) |0⟩ = Cπ(t) = ⟨𝒪⟩

⟨𝒪⟩ =
∫

D
𝒪[A] eiS[A]

∫
D

eiS[A]



Importance sampling 
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⟨0 |π(t) π†(0) |0⟩ = Cπ(t) = ⟨𝒪⟩

⟨𝒪⟩ =
∫

D
𝒪[A] eiS[A]

∫
D

eiS[A]
⟨𝒪⟩ =

1
Z ∑
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e−Si𝒪i



Importance sampling 
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Our only hope!  

⟨0 |π(t) π†(0) |0⟩ = Cπ(t) = ⟨𝒪⟩

⟨𝒪⟩ =
∫

D
𝒪[A] eiS[A]

∫
D

eiS[A]
⟨𝒪⟩ =

1
Z ∑

i

e−Si𝒪i



Importance sampling 
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Configuration 1 𝒪1 Configuration 2 𝒪2 Configuration 3 𝒪3 Configuration 4 𝒪4

⟨0 |π(t) π†(0) |0⟩ = Cπ(t) = ⟨𝒪⟩

⟨𝒪⟩ =
∫

D
𝒪[A] eiS[A]

∫
D

eiS[A]
⟨𝒪⟩ =

1
Z ∑

i

e−Si𝒪i

⟨𝒪⟩ =
1
N

N

∑
i

𝒪i
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MCMC and neural networks 



Markov chain Monte Carlo 
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• Propose possible configuration,       

• Propose steps in a chain  accept with 

probability   

x

x → x′�

p = min [1,
e−S(x′�)

e−S(x) ]
p(x)

x

x1

x2

x3



2/42Kimmy Cushman  |   Replacing Markov chain Monte Carlo with generative flows neural networks   |   4 March 2020    |   38

Markov chain Monte Carlo 

Drawback: thermalization and autocorrelation 

2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 2000 updates 

Ising model

Number                     Number 
independent            generated 
configurations        configurations

S = − β∑
⟨i,j⟩

sisj ≪
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Markov chain Monte Carlo 

Drawback: critical slowing down near critical points

↕Correlation length diverges Autocorrelation time diverges

# updates  → ∞# updates  → ∞# updates  → ∞

β → ∞β → ∞β → ∞

DisorderedDisorderedDisordered

Small βSmall βSmall β

Ordered

Ising model     
ordered/disorder phases

QCD + dark matter 
Confined phase/quark gluon plasma 

BSM Higgs 
Electroweak symmetry breaking transition 
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Deep neural networks

Fully connected network with 4 hidden layers
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Deep neural networks

Fully connected network with 4 hidden layers

Cat — 94%

Dog — 4%

Bird — 1%

Snake —0.5%

Mouse —0.5%
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Generative Neural networks

https://www.thispersondoesnotexist.com
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Generative Neural networks
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Generative Neural networks

https://www.thispersondoesnotexist.com
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Generative Neural networks

Auto-encoders

encoder decoder

latent 
space
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Generative Neural networks

Auto-encoders GANs
[Sarvasv Kulpati]

encoder decoder

latent 
space

https://medium.com/@sarvasvkulpati?source=post_page-----2620ee465c30----------------------
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Generative Neural networks

Auto-encoders GANs
[Sarvasv Kulpati]

encoder decoder

latent 
space

• Require A LOT of training data  

• Mode collapse 

https://medium.com/@sarvasvkulpati?source=post_page-----2620ee465c30----------------------
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Generative Neural networks

Auto-encoders GANs
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encoder decoder
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space
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Generative flow networks for  
 O(3) spin model



Generative flow approach 
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Goal:     Train neural network to produce configurations  
by learning bijection 

U(x) q(x) ≈ p(x)
Training 

Neural  
network  
magic 

See also   Albergo, Kanwar, Shanahan 1904.12072 
Dinh, Sohl-Dickstein, Bengio 1605.08803 
Muller, McWilliams, Rousselle, Gross, Novak, 1808.03856 



Generative flow approach 

2/42Kimmy Cushman  |   Replacing Markov chain Monte Carlo with generative flows neural networks   |   4 March 2020    |   30

Why a bijection?

Why    ?q(x) → U(x)

U(x) → q(x) (≈ p(x))For generation 

Typical importance sampling

⟨𝒪⟩ =
1
Z ∫ dx 𝒪(x) e−S(x)

=
1
Z ∫ dx 𝒪(x) p(x)

≈
1
N ∑

i

𝒪i |p



Generative flow approach 

2/42Kimmy Cushman  |   Replacing Markov chain Monte Carlo with generative flows neural networks   |   4 March 2020    |   29

Why a bijection?

⟨𝒪⟩ =
1
Z ∫ dx 𝒪(x) e−S(x)

=
1
Z ∫ dx 𝒪(x) p(x)

≈
1
N ∑

i

𝒪i |p

Why    ?q(x) → U(x)

⟨𝒪⟩ =
1
Z ∫ dx 𝒪(x) p(x)

U(x) → q(x) (≈ p(x))For generation 

Generative flow importance samplingTypical importance sampling

=
1
Z ∫ dx 𝒪(x)

p(x)
q(x)

q(x)

≈
∑i 𝒪i

pi

qi
|q

∑i
pi

qi
|q



Generative flow approach 
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Why a bijection?

Why    ?q(x) → U(x)

U(x) → q(x) (≈ p(x))For generation 

Generative flow importance samplingTypical importance sampling

Sampled according to  
Hard to sample from (MCMC)

p(x) Sampled according to  
Easy to sample from (  is easy) 

q(x)
U(x)

⟨𝒪⟩ =
1
Z ∫ dx 𝒪(x) e−S(x)

=
1
Z ∫ dx 𝒪(x) p(x)

≈
1
N ∑

i

𝒪i |p

⟨𝒪⟩ =
1
Z ∫ dx 𝒪(x) p(x)

=
1
Z ∫ dx 𝒪(x)

p(x)
q(x)

q(x)

≈
∑i 𝒪i

pi

qi
|q

∑i
pi

qi
|q



q(x)q(x) p(x)p(x)
Train by minimizing divergence 
between    and    
 

q(x) p(x)
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H = hL h2 h1
Composition of  
coupling layers 

q(xi) = U(xi)
∂H(x; θ)

∂xi

−1
Learned Jacobian of 
variable transformation 

 U → q

p(x)

q(x)

Neural network architecture 

H(U(x)) = q(x)



Neural network architecture 
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h1 h2 hL

U(x) q(x)yB = C(xB; m(xA))

yA = xA

xA

yB = xB

xByB = C(xA; m(xB))xB

yB = xB

xByB = C(xA; m(xB))xB

xA

xB
11

1

1

**
*

**
*

1
1

∂H
∂xi

= h2

h1

Invertible map 
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Choose coupling layers function  easily invertible 

Ex:  

C(xA, m(xB))

C(xA; s, t) = xA ⊙ es + t

yB = xB

yA = C(xB; m(xA))
 and   learned parameters⃗s ⃗t

Neural network architecture 
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Choose coupling layers function  easily invertible 

Ex:  

C(xA, m(xB))
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yB = xB

yA = C(xB; m(xA))
∂h1

∂xB
= 1

∂h1

∂xA
i

= esi

 and   learned parameters⃗s ⃗t

11
1

1

es9

es10

es16

es1

es2

es8

1
1

∂H
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= h2

h1

Neural network architecture 
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Choose coupling layers function  easily invertible 

Ex:  

C(xA, m(xB))

C(xA; s, t) = xA ⊙ es + t

yB = xB

yA = C(xB; m(xA))
∂h1

∂xB
= 1

∂h1

∂xA
i

= esi

 and   learned parameters⃗s ⃗t

11
1

1

es9

es10

es16

es1

es2

es8

1
1

∂H
∂xi

= h2

h1

q(xi) = U(xi)
∂H(x; θ)

∂xi

−1

= U(xi) e−∑ si

Neural network architecture 



QCD vs O(3) model
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O(3) spin model

S = − β∑
⟨i,j⟩

⃗si ⋅ ⃗sj

M. D. Leblanc, J. P. Whitehead, M. L. Plumer.

Lattice QCD (pure gauge)

2 N2 degrees of freedom 

O(3) symmetry 

S =
β
3 ∑

n
∑
μ<ν

Re tr[1 − Uμν]
8 × 4 N4 degrees of freedom 

SU(3) local gauge symmetry 



O(3) spin model training 
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1) Choose system size 

2) Choose hyper parameters 

3) Train - loss function 

4) Validation



Choose system
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2x1 spin chain     

4x1 spin chain    

8x8 spin lattice    

S = − 2β s1 ⋅ s2

S = −
β
2 ∑

x

sx ⋅ sx±1

S = −
β
2 ∑

x

sx ⋅ sx± ̂i + sx ⋅ sx± ̂j



Choose hyper parameters 
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1) Number of samples - 5000 

2) Number of networks - 5 

3) Number of layers - 6   

4) Coupling transform - piecewise cumulative 

distribution function  

5) Learning rate, …

39:4 • Müller et al.

Appendix A for a full treatment. The computation of the determinant
thus scales linearly with D and is therefore tractable even in high-
dimensional problems.

3.2 A�ine Coupling Transforms
Additive Coupling Transform. Dinh et al. [2014] describe a very

simple coupling transform that merely translates the signal in indi-
vidual dimensions of B:

C(xB ; t) = xB + t , (11)

where the translation vector t 2 R |B | is produced by functionm(xA).

Multiply-add Coupling Transform. Since additive coupling layers
have unit Jacobian determinants, i.e. they preserve volume, Dinh
et al. [2016] propose to add a multiplicative factor es :

C(xB ; s, t) = xB � es + t , (12)

where � represents element-wise multiplication and vectors t and
s 2 R |B | are produced bym: (s, t) =m(xA). The Jacobian determi-
nant of a multiply-add coupling layer is simply e

Õ
si .

The coupling transforms above are relatively simple. The trick
that enables learning nonlinear dependencies across partitions is
the parametric functionm. This function can be arbitrarily complex,
e.g. a neural network, as we do not need its inverse to invert the
coupling layer and its Jacobian does not a�ect the determinant
of the coupling layer (cf. Appendix A). Using a sophisticated m
allows extracting complex nonlinear relations between the two
partitions. The coupling transform C , however, remains simple,
invertible, and permits tractable computation of determinants even
in high-dimensional settings.

3.3 Compounding Multiple Coupling Layers
As mentioned initially, the complete transform between the data
space and the latent space is obtained by chaining a number of cou-
pling layers. A di�erent instance of neural networkm is trained for
each coupling layer. To ensure that all dimensions can be modi�ed,
the output of one layer is fed into the next layer with the roles of the
two partitions swapped; see Figure 1. Compounding two coupling
layers in this manner ensures that every dimension can be altered.

The number of coupling layers required to ensure that each dimen-
sion can in�uence every other dimension depends on the total num-
ber of dimensions. For instance, in a 2D setting (where each partition
contains exactly one dimension) we need only two coupling layers.
3D problems require three layers, and for any high-dimensional
con�guration there must be at least four coupling layers.
In practice, however, high-dimensional problems (e.g. generat-

ing images of faces), require signi�cantly more coupling layers
since each a�ne transform is fairly limited. In the next section,
we address this limitation by providing more expressive mappings
that allow reducing the number of coupling layers and thereby the
sample-generation and density-evaluation costs. This improves the
performance of Monte Carlo estimators presented in Section 6.

4 PIECEWISE-POLYNOMIAL COUPLING LAYERS
In this section, we propose piecewise-polynomial invertible maps
as coupling transforms instead of the limited a�ne warps reviewed

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

0.00 0.20 0.40 0.55 0.70 1.00

0

1

2

3

0.00 0.20 0.40 0.55 0.70 1.00

0

1

Target

Fit

Network prediction: qi =
@Ci (xBi )
@xBi

Coupling transform: Ci (xBi )

P/
w
-li
ne
ar

P/
w
-q
ua
dr
at
ic

Fig. 2. Predicted probability density functions (PDFs, le�) and correspond-
ing cumulative distribution functions (CDFs, right) with K = 5 bins fi�ed to
a target distribution (dashed). The top row illustrates a piecewise-linear CDF
and the bo�om row a piecewise-quadratic CDF. The piecewise-quadratic
approximation tends to work be�er in practice thanks to its first-order conti-
nuity (C1) and adaptive bin sizing. In Appendix B we show that, in contrast
to piecewise-quadratic CDFs, adaptive bin sizing is di�icult to achieve for
piecewise-linear CDFs with gradient-based optimization methods.

previously. Speci�cally, we introduce the usage of piecewise poly-
nomials with degrees 1 and 2, i.e. piecewise-linear and piecewise-
quadratic warps. In contrast to Dinh et al. [2014, 2016], who assume
x ,� 2 (�1,+1)D and Gaussian latent variables, we choose to oper-
ate in a unit hypercube (i.e.x ,� 2 [0, 1]D ) with uniformly distributed
latent variables, as most practical problems span a �nite domain.
Unbounded domains can still be handled by warping the input of
h1 and the output of hL e.g. using the sigmoid and logit functions.

Similarly to Dinh and colleagues, we ensure computationally
tractable Jacobians via separability. We transform each dimension
independently:

C
�
xB ;m(xA)

�
=
⇣
C1

�
xB1 ;m(xA)

�
, · · · , C |B |

�
xB|B | ;m(xA)

� ⌘T
.

(13)

Operating on unit intervals allows interpreting the warping function
Ci as a cumulative distribution function (CDF). To produce each Ci ,
we instrument the neural network to output the corresponding un-
normalized probability density qi , and construct Ci by integration;
see Figure 2 for an illustration.
In order to further improve performance, we propose to encode

the inputs to the neural network using one-blob encoding, which we
discuss in Section 4.3.

4.1 Piecewise-Linear Coupling Transform
Motivated by their simplicity, we begin by investigating the simplest
continuous piecewise-polynomial coupling transforms: piecewise-
linear ones. Recall that we partition the D-dimensional input vector
in two disjoint groups, A and B, such that x = (xA,xB ). We divide
the unit dimensions in partition B into K bins of equal widthw =
K�1. To de�ne all |B | transforms at once, we instrument the network
m(xA) to predict a |B | ⇥ K matrix, denoted bQ . Each i-th row of bQ
de�nes the unnormalized probability mass function (PMF) of the

Disney Research Neural Important Sampling 



Training against loss 

L(x, θ) = ∑
pi

qi
log( pi

qi )
Loss functions

KL

L(x, θ) = ∑
pi

qi
log( pi

qi )
2

Exp

L(x, θ) = ∑
(pi − qi)2

q2
i

Chi2

Epoch

Lo
ss
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How to believe a neural network: 
Validation



Check p and q  

Learning: 
 q(x) → p(x)

10�1 100 101
0

50

100

150

200

250

pi

qi
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Quantitative correlations 

S = − 2β s1 ⋅ s2 = − 2β cos θ

C(1) =
∫ d cos θ cos θ e−S(θ)

∫ d cos θ e−S(θ)

= coth(2β) −
1

2β

0 2 4 6 8 10
�

0.0

0.2

0.4

0.6

0.8

C
(1

)
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Quantitative correlations 

⟨𝒪⟩ = ∑
i

𝒪i
pi

qi
|qC(1,β = 1) = 0.53731
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unweighted mean = 0.310, dx = 1
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C(1)
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weighted mean =0.53421 ± 0.00352
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Quantitative correlations 

3 methods:  

1) Traditional Metropolis MCMC    

2) Random (uniform)     

3) Generative flows training    

⟨𝒪⟩ =
1
N ∑ 𝒪i |p

⟨𝒪⟩ =
∑ 𝒪i pi

∑ pi

⟨𝒪⟩ =
∑ 𝒪i

pi

qi
|q

∑ pi

qi
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How to believe a neural network: 
Tests



Tests of invariant physics 

S = − ∑ β sx ⋅ sx±1

S = − ∑ β1 sx ⋅ sx±1 + β2 sx ⋅ sx±2

S = − ∑ β1 sx ⋅ sx±1 + β2 sx ⋅ sx±2 + β3 (sx ⋅ sx±1)2

Long-distance physics should not depend on  
short distance details of action

S = − ∑ βα Sα
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Similar actions 



Tests of invariant physics 

1) Given 1-term action, predict    from ensemble β

S1 = − ∑ β sx ⋅ sx±1 What is  ?β
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Similar actions 
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Tests of invariant physics 

1) Given 1-term action, predict    from ensemble β
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Similar actions 

M. Hasenbusch et al., Phys Lett B 338 (1994) 308-312



Tests of invariant physics 

1) Given 1-term action, predict    from ensemble  

2) Given 2-term action, predict   from ensemble

β

β1 , β2

What are  ?β1 , β2S2 = − ∑ β1 sx ⋅ sx±1 + β2 sx ⋅ sx±2
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Similar actions 



Tests of invariant physics 

1) Given 1-term action, predict    from ensemble  

2) Given 2-term action, predict   from ensemble 

3)  Compute corresponding “truncated” actions:  

β

β1 , β2

{β1, β2} → {β1,0}
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Similar actions 



Tests of invariant physics 

3)  Compute corresponding “truncated” actions:  {β1, β2} → {β1,0}
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Similar actions 
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Tests of invariant physics 

3)  Compute corresponding “truncated” actions:   

4) Test neural networks

{β1, β2} → {β1,0}
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Future work
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Future work 

• Complete tests of invariant physics  

• Train larger 2D lattices 

• Attempt gauge theory - Schwinger model  

• Lattice QCD (small lattices) 

• Cost-benefit analysis 
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Thank you! 



2/42Kimmy Cushman  |   Replacing Markov chain Monte Carlo with generative flows neural networks   |   13 February 2020    |   47

Thank you! 



Tests of invariant physics 

S = − ∑ βα Sα
M. Hasenbusch et al., Phys Lett B 338 (1994) 308-312

Monte Carlo renormalization group 
Canonical demon algorithm

SD = + ∑ βα dα d ∈ [0,dmax]

Z = (Πα ∫
dmax

0
ddα)∫ dϕ e−(S+SD) ⇒ ⟨dα⟩ =

1
βα

(1 −
βαdmax

eβαdmax − 1 )

Micro-canonical MCMC with   Stot = S + SD : ΔStot = 0
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3x3 configuration  
 

 
β = 1.0
ϕ ∈ 2π × [0,1] = [0,2π]
θ ∈ cos−1(2 × [0,1] − 1) = [0,π]



LGTLGT
deep 
LGT



LGTLGT
deep 
LGT



Correlation functions
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