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Motivation

• Physical models of interest require non-perturbative 
calculations that have a sign problem:

• QCD at finite baryon density (RHIC, neutron star 
structure, etc)

• Real time dynamics for strongly coupled QFT

• Strongly correlated electrons (Hubbard model, etc.)

• Complex path methods are likely to work for a large 
class of problems.
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QFT on the lattice
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• The partition function is expressed as a path integral

• The fields are sampled on a grid; differential operators 
are replaced by finite difference ones

• The partition function is a many-dimensional integral 
over real variables

• The integrand has no singularity for both bosonic 
and fermionic theories
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Monte-Carlo sampling

• QFT correlators are statistical averages

• Estimate using importance sampling

• Stochastic errors decrease with sample size
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Sign problem
• When the partition function is not real direct 

Monte-Carlo sampling is not possible

• The usual workaround involves reweighting

• Sampling is done based on SR; SI is introduced 
in the observable:
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Sign problem
• A sign problem appears when the phase average 

is nearly zero (or zero):

• The cost of the calculation is inversely 
proportional to the phase average:

• For example in QCD

• In QCD the calculation cost increases 
exponentially with the volume
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Contour deformation
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• Generalized Cauchy’s theorem
• Deformation in the field variable space (lattice geometry unchanged)



Holomorphic gradient flow 
and Lefschetz thimbles
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Holomorphic gradient flow 
and Lefschetz thimbles
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Lefschetz thimble

�13

S(x1, x2) = x2
1 + x2

2 + 10ix1 + 20ix2 + ix1x2/3

e�S(x1,x2) (real plane) e�S(z1,z2) (gaussian thimble)



Generalized thimble method

• Most systems require 
multiple thimble

• Thimble decomposition 
is hard

• Use the manifolds 
generated by the 
holomorphic flow
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Basic idea
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Basic idea
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• The differential equations are integrated for a fixed 
amount of “time”: Tflow

• This is expensive, especially the calculation of J
• Sampling is done based on the effective action and 

the phase is reweighted at the end
Se↵(x) = SR(z(x))� ln | det J(x)|



Numerical challenge
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• For each step integrate a set of differential equations to get z and J
• This is expensive, especially the calculation of J and det J
• To address this problem we used

• improved sampling algorithms (avoid computing J or det J)
• fast estimators for det J
• numerically cheaper integration manifolds

Se↵(x) = SR(z(x))� ln | det J(x)|
• On the flow manifolds sampling is done based on the effective action



Learnifold

�18

⇐

¥¥
#t *€0
,

⇐
÷¥
f #÷€tff §

sin(Re(A0))

cos(Re(A0))

sin(Re(A1))

cos(Re(A1))

Im(A0)

Im(A1)

• Generate few configs on the 
generalized thimble manifold

• Use neural nets with appropriate 
symmetries to interpolate

• Integrate over the learnifold, the 
manifold defined by the trained 
neural net 



Learnifold
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• We use a feed-forward 
network and train it using 
supervised learning

• The networks learns quickly 
about the constant shift, 
further improvements are slow

• Most of the cost is in 
generating the seed 
configurations with much less 
required for training

• Integrations over learnifold is 
fast
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FIG. 2. Pictorial representation of parameterizations of manifolds. The standard generalized thimble method parameterizes
(left) the manifold MT by its preimage on the real plane. This results in a large Jacobian because most regions flow into the
singularities and a small region stretches. The learnifold LT is parameterized (right) by its real part, so the region on the real
plane is larger and the barrier between thimbles are narrower.

IV. THE LEARNIFOLD

In order to avoid having to solve Eq. (1) and Eq. (7) at every step of the Monte Carlo chain, we will find another
manifold LT (the “learnifold”) that approximates MT , but can be more readily computed (using a feed-forward
network). Points „̃ on the learnifold are parameterized by points „ on the real plane:

„̃i(„) = „i + if̃i(„) (18)

where the function f̃ will be constructed using the kernel function f represented by a feed-forward network (see below).
Besides the gain in speed from the use of a feed-forward network in place of evolution of Eq. (1), our method di�ers

from the one in [16, 17, 20, 22, 25, 26] by the use of a di�erent manifold parameterization: a point in the manifold
of integration is parameterized by the real part of its coordinates instead of its pre-image under the flow in Eq. (1).
This new parameterization is portrayed in Fig. 2: the left-hand panel shows the parameterization arrived at from a
pure-flow algorithm, and the right panel shows the parameterization from the learnifold.

This parameterization choice su�ers from one drawback. Since a point „̃ on the learnifold is parameterized by the
real part „ © Re „̃, the learnifold will necessarily have exactly one point with any given real part. In other words, the
function f̃ defining the LT is single-valued. This is a restriction on the set of manifolds that can be represented by
this scheme: if the flowed manifold is such that multiple points share the same real coordinates, the class of learnifolds
described here may not contain a good approximation. In practice, we find that the parts of the MT that are of
interest (those parts with comparatively low actions) do not behave in this way.

Despite this mild caveat, the advantages are substantial. Firstly, the parameterization of MT by the pre-image of
the flow causes a small region of parameter space (shaded blue in the figure) to map to a large region of the manifold.
This results in large fluctuations of |det J |, which is expensive to compute. The parameterization of LT by the real
coordinates should not lead to large stretchings. In fact, we find that det J ¥ 1 in practice, so that this contribution
may be accounted for after-the-fact in reweighting. The second advantage is that the parameterization reduces the
multimodality problem. In „-space, regions of large probability do not shrink with the flow, and so no large gaps are
created between regions that contribute significantly to the integral. A Monte Carlo chain can therefore more easily
explore the relevant regions of the integration domain.

Field theoretic models of interest often have a discrete group of translational symmetries on the lattice. These
symmetries are respected by the flowed manifold, and therefore should be impose on the learnifold which approximates
it. Translation symmetry can be implemented in our setup in a simple way. Let Ti be the lattice translation that places
lattice site i at the origin. We want that „̃(Ti„) = Ti„̃(„) which requires that f̃(Ti„) = Tif̃(„). A kernel function
f : RN

æ R can be used to define a translational invariant function f̃ : RN
æ RN by:

f̃i(„) = f(Ti„) (19)

When multiple degrees of freedom are associated with each lattice site (for the model of interest to us, there are 2), f
will have that many components. For our case we train the kernel function f to match the values of the imaginary
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Learnifold parametrization
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IV. THE LEARNIFOLD

In order to avoid having to solve Eq. (1) and Eq. (7) at every step of the Monte Carlo chain, we will find another
manifold LT (the “learnifold”) that approximates MT , but can be more readily computed (using a feed-forward
network). Points „̃ on the learnifold are parameterized by points „ on the real plane:

„̃i(„) = „i + if̃i(„) (18)

where the function f̃ will be constructed using the kernel function f represented by a feed-forward network (see below).
Besides the gain in speed from the use of a feed-forward network in place of evolution of Eq. (1), our method di�ers

from the one in [16, 17, 20, 22, 25, 26] by the use of a di�erent manifold parameterization: a point in the manifold
of integration is parameterized by the real part of its coordinates instead of its pre-image under the flow in Eq. (1).
This new parameterization is portrayed in Fig. 2: the left-hand panel shows the parameterization arrived at from a
pure-flow algorithm, and the right panel shows the parameterization from the learnifold.

This parameterization choice su�ers from one drawback. Since a point „̃ on the learnifold is parameterized by the
real part „ © Re „̃, the learnifold will necessarily have exactly one point with any given real part. In other words, the
function f̃ defining the LT is single-valued. This is a restriction on the set of manifolds that can be represented by
this scheme: if the flowed manifold is such that multiple points share the same real coordinates, the class of learnifolds
described here may not contain a good approximation. In practice, we find that the parts of the MT that are of
interest (those parts with comparatively low actions) do not behave in this way.

Despite this mild caveat, the advantages are substantial. Firstly, the parameterization of MT by the pre-image of
the flow causes a small region of parameter space (shaded blue in the figure) to map to a large region of the manifold.
This results in large fluctuations of |det J |, which is expensive to compute. The parameterization of LT by the real
coordinates should not lead to large stretchings. In fact, we find that det J ¥ 1 in practice, so that this contribution
may be accounted for after-the-fact in reweighting. The second advantage is that the parameterization reduces the
multimodality problem. In „-space, regions of large probability do not shrink with the flow, and so no large gaps are
created between regions that contribute significantly to the integral. A Monte Carlo chain can therefore more easily
explore the relevant regions of the integration domain.

Field theoretic models of interest often have a discrete group of translational symmetries on the lattice. These
symmetries are respected by the flowed manifold, and therefore should be impose on the learnifold which approximates
it. Translation symmetry can be implemented in our setup in a simple way. Let Ti be the lattice translation that places
lattice site i at the origin. We want that „̃(Ti„) = Ti„̃(„) which requires that f̃(Ti„) = Tif̃(„). A kernel function
f : RN

æ R can be used to define a translational invariant function f̃ : RN
æ RN by:

f̃i(„) = f(Ti„) (19)

When multiple degrees of freedom are associated with each lattice site (for the model of interest to us, there are 2), f
will have that many components. For our case we train the kernel function f to match the values of the imaginary

• The Learnifold map is 

• For each real field a imaginary 
shift (elevation) is computed 
based on the current config

• The elevation function is 
determined by the neural 
network

• The elevation is position 
dependent

ϕ → ϕ̃ = ϕ + i f(ϕ)

ϕ̃i = ϕi + i fi(ϕ)
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IV. THE LEARNIFOLD

In order to avoid having to solve Eq. (1) and Eq. (7) at every step of the Monte Carlo chain, we will find another
manifold LT (the “learnifold”) that approximates MT , but can be more readily computed (using a feed-forward
network). Points „̃ on the learnifold are parameterized by points „ on the real plane:

„̃i(„) = „i + if̃i(„) (18)

where the function f̃ will be constructed using the kernel function f represented by a feed-forward network (see below).
Besides the gain in speed from the use of a feed-forward network in place of evolution of Eq. (1), our method di�ers

from the one in [16, 17, 20, 22, 25, 26] by the use of a di�erent manifold parameterization: a point in the manifold
of integration is parameterized by the real part of its coordinates instead of its pre-image under the flow in Eq. (1).
This new parameterization is portrayed in Fig. 2: the left-hand panel shows the parameterization arrived at from a
pure-flow algorithm, and the right panel shows the parameterization from the learnifold.

This parameterization choice su�ers from one drawback. Since a point „̃ on the learnifold is parameterized by the
real part „ © Re „̃, the learnifold will necessarily have exactly one point with any given real part. In other words, the
function f̃ defining the LT is single-valued. This is a restriction on the set of manifolds that can be represented by
this scheme: if the flowed manifold is such that multiple points share the same real coordinates, the class of learnifolds
described here may not contain a good approximation. In practice, we find that the parts of the MT that are of
interest (those parts with comparatively low actions) do not behave in this way.

Despite this mild caveat, the advantages are substantial. Firstly, the parameterization of MT by the pre-image of
the flow causes a small region of parameter space (shaded blue in the figure) to map to a large region of the manifold.
This results in large fluctuations of |det J |, which is expensive to compute. The parameterization of LT by the real
coordinates should not lead to large stretchings. In fact, we find that det J ¥ 1 in practice, so that this contribution
may be accounted for after-the-fact in reweighting. The second advantage is that the parameterization reduces the
multimodality problem. In „-space, regions of large probability do not shrink with the flow, and so no large gaps are
created between regions that contribute significantly to the integral. A Monte Carlo chain can therefore more easily
explore the relevant regions of the integration domain.

Field theoretic models of interest often have a discrete group of translational symmetries on the lattice. These
symmetries are respected by the flowed manifold, and therefore should be impose on the learnifold which approximates
it. Translation symmetry can be implemented in our setup in a simple way. Let Ti be the lattice translation that places
lattice site i at the origin. We want that „̃(Ti„) = Ti„̃(„) which requires that f̃(Ti„) = Tif̃(„). A kernel function
f : RN

æ R can be used to define a translational invariant function f̃ : RN
æ RN by:

f̃i(„) = f(Ti„) (19)

When multiple degrees of freedom are associated with each lattice site (for the model of interest to us, there are 2), f
will have that many components. For our case we train the kernel function f to match the values of the imaginary
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IV. THE LEARNIFOLD

In order to avoid having to solve Eq. (1) and Eq. (7) at every step of the Monte Carlo chain, we will find another
manifold LT (the “learnifold”) that approximates MT , but can be more readily computed (using a feed-forward
network). Points „̃ on the learnifold are parameterized by points „ on the real plane:

„̃i(„) = „i + if̃i(„) (18)

where the function f̃ will be constructed using the kernel function f represented by a feed-forward network (see below).
Besides the gain in speed from the use of a feed-forward network in place of evolution of Eq. (1), our method di�ers

from the one in [16, 17, 20, 22, 25, 26] by the use of a di�erent manifold parameterization: a point in the manifold
of integration is parameterized by the real part of its coordinates instead of its pre-image under the flow in Eq. (1).
This new parameterization is portrayed in Fig. 2: the left-hand panel shows the parameterization arrived at from a
pure-flow algorithm, and the right panel shows the parameterization from the learnifold.

This parameterization choice su�ers from one drawback. Since a point „̃ on the learnifold is parameterized by the
real part „ © Re „̃, the learnifold will necessarily have exactly one point with any given real part. In other words, the
function f̃ defining the LT is single-valued. This is a restriction on the set of manifolds that can be represented by
this scheme: if the flowed manifold is such that multiple points share the same real coordinates, the class of learnifolds
described here may not contain a good approximation. In practice, we find that the parts of the MT that are of
interest (those parts with comparatively low actions) do not behave in this way.

Despite this mild caveat, the advantages are substantial. Firstly, the parameterization of MT by the pre-image of
the flow causes a small region of parameter space (shaded blue in the figure) to map to a large region of the manifold.
This results in large fluctuations of |det J |, which is expensive to compute. The parameterization of LT by the real
coordinates should not lead to large stretchings. In fact, we find that det J ¥ 1 in practice, so that this contribution
may be accounted for after-the-fact in reweighting. The second advantage is that the parameterization reduces the
multimodality problem. In „-space, regions of large probability do not shrink with the flow, and so no large gaps are
created between regions that contribute significantly to the integral. A Monte Carlo chain can therefore more easily
explore the relevant regions of the integration domain.

Field theoretic models of interest often have a discrete group of translational symmetries on the lattice. These
symmetries are respected by the flowed manifold, and therefore should be impose on the learnifold which approximates
it. Translation symmetry can be implemented in our setup in a simple way. Let Ti be the lattice translation that places
lattice site i at the origin. We want that „̃(Ti„) = Ti„̃(„) which requires that f̃(Ti„) = Tif̃(„). A kernel function
f : RN

æ R can be used to define a translational invariant function f̃ : RN
æ RN by:

f̃i(„) = f(Ti„) (19)

When multiple degrees of freedom are associated with each lattice site (for the model of interest to us, there are 2), f
will have that many components. For our case we train the kernel function f to match the values of the imaginary

• The parametrization does not 
allow for “folding” manifolds, 
but this is not too restrictive

• The Jacobian for this map is 
better behaved than the 
generalized thimble manifold 
— we can disregard it during 
sampling and “reweight” its 
contribution

• The map induced by the flow 
creates “pockets” when 
multiple thimbles contribute 
and the distribution is usually 
multimodal

• The Learnifold map is 
smoother and avoids trapping
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FIG. 2. Pictorial representation of parameterizations of manifolds. The standard generalized thimble method parameterizes
(left) the manifold MT by its preimage on the real plane. This results in a large Jacobian because most regions flow into the
singularities and a small region stretches. The learnifold LT is parameterized (right) by its real part, so the region on the real
plane is larger and the barrier between thimbles are narrower.

IV. THE LEARNIFOLD

In order to avoid having to solve Eq. (1) and Eq. (7) at every step of the Monte Carlo chain, we will find another
manifold LT (the “learnifold”) that approximates MT , but can be more readily computed (using a feed-forward
network). Points „̃ on the learnifold are parameterized by points „ on the real plane:

„̃i(„) = „i + if̃i(„) (18)

where the function f̃ will be constructed using the kernel function f represented by a feed-forward network (see below).
Besides the gain in speed from the use of a feed-forward network in place of evolution of Eq. (1), our method di�ers

from the one in [16, 17, 20, 22, 25, 26] by the use of a di�erent manifold parameterization: a point in the manifold
of integration is parameterized by the real part of its coordinates instead of its pre-image under the flow in Eq. (1).
This new parameterization is portrayed in Fig. 2: the left-hand panel shows the parameterization arrived at from a
pure-flow algorithm, and the right panel shows the parameterization from the learnifold.

This parameterization choice su�ers from one drawback. Since a point „̃ on the learnifold is parameterized by the
real part „ © Re „̃, the learnifold will necessarily have exactly one point with any given real part. In other words, the
function f̃ defining the LT is single-valued. This is a restriction on the set of manifolds that can be represented by
this scheme: if the flowed manifold is such that multiple points share the same real coordinates, the class of learnifolds
described here may not contain a good approximation. In practice, we find that the parts of the MT that are of
interest (those parts with comparatively low actions) do not behave in this way.

Despite this mild caveat, the advantages are substantial. Firstly, the parameterization of MT by the pre-image of
the flow causes a small region of parameter space (shaded blue in the figure) to map to a large region of the manifold.
This results in large fluctuations of |det J |, which is expensive to compute. The parameterization of LT by the real
coordinates should not lead to large stretchings. In fact, we find that det J ¥ 1 in practice, so that this contribution
may be accounted for after-the-fact in reweighting. The second advantage is that the parameterization reduces the
multimodality problem. In „-space, regions of large probability do not shrink with the flow, and so no large gaps are
created between regions that contribute significantly to the integral. A Monte Carlo chain can therefore more easily
explore the relevant regions of the integration domain.

Field theoretic models of interest often have a discrete group of translational symmetries on the lattice. These
symmetries are respected by the flowed manifold, and therefore should be impose on the learnifold which approximates
it. Translation symmetry can be implemented in our setup in a simple way. Let Ti be the lattice translation that places
lattice site i at the origin. We want that „̃(Ti„) = Ti„̃(„) which requires that f̃(Ti„) = Tif̃(„). A kernel function
f : RN

æ R can be used to define a translational invariant function f̃ : RN
æ RN by:

f̃i(„) = f(Ti„) (19)

When multiple degrees of freedom are associated with each lattice site (for the model of interest to us, there are 2), f
will have that many components. For our case we train the kernel function f to match the values of the imaginary
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IV. THE LEARNIFOLD

In order to avoid having to solve Eq. (1) and Eq. (7) at every step of the Monte Carlo chain, we will find another
manifold LT (the “learnifold”) that approximates MT , but can be more readily computed (using a feed-forward
network). Points „̃ on the learnifold are parameterized by points „ on the real plane:

„̃i(„) = „i + if̃i(„) (18)

where the function f̃ will be constructed using the kernel function f represented by a feed-forward network (see below).
Besides the gain in speed from the use of a feed-forward network in place of evolution of Eq. (1), our method di�ers

from the one in [16, 17, 20, 22, 25, 26] by the use of a di�erent manifold parameterization: a point in the manifold
of integration is parameterized by the real part of its coordinates instead of its pre-image under the flow in Eq. (1).
This new parameterization is portrayed in Fig. 2: the left-hand panel shows the parameterization arrived at from a
pure-flow algorithm, and the right panel shows the parameterization from the learnifold.

This parameterization choice su�ers from one drawback. Since a point „̃ on the learnifold is parameterized by the
real part „ © Re „̃, the learnifold will necessarily have exactly one point with any given real part. In other words, the
function f̃ defining the LT is single-valued. This is a restriction on the set of manifolds that can be represented by
this scheme: if the flowed manifold is such that multiple points share the same real coordinates, the class of learnifolds
described here may not contain a good approximation. In practice, we find that the parts of the MT that are of
interest (those parts with comparatively low actions) do not behave in this way.

Despite this mild caveat, the advantages are substantial. Firstly, the parameterization of MT by the pre-image of
the flow causes a small region of parameter space (shaded blue in the figure) to map to a large region of the manifold.
This results in large fluctuations of |det J |, which is expensive to compute. The parameterization of LT by the real
coordinates should not lead to large stretchings. In fact, we find that det J ¥ 1 in practice, so that this contribution
may be accounted for after-the-fact in reweighting. The second advantage is that the parameterization reduces the
multimodality problem. In „-space, regions of large probability do not shrink with the flow, and so no large gaps are
created between regions that contribute significantly to the integral. A Monte Carlo chain can therefore more easily
explore the relevant regions of the integration domain.

Field theoretic models of interest often have a discrete group of translational symmetries on the lattice. These
symmetries are respected by the flowed manifold, and therefore should be impose on the learnifold which approximates
it. Translation symmetry can be implemented in our setup in a simple way. Let Ti be the lattice translation that places
lattice site i at the origin. We want that „̃(Ti„) = Ti„̃(„) which requires that f̃(Ti„) = Tif̃(„). A kernel function
f : RN

æ R can be used to define a translational invariant function f̃ : RN
æ RN by:

f̃i(„) = f(Ti„) (19)

When multiple degrees of freedom are associated with each lattice site (for the model of interest to us, there are 2), f
will have that many components. For our case we train the kernel function f to match the values of the imaginary

• The feed forward network is defined by its 
topology and parameters: on each link we 
have a weight , connecting node i on 
layer k with node j on layer k+1

• At each node we have a bias 
• The result is computed iteratively, starting 

from the input layer towards the output

where  is a smooth step 
function 

• The parameters are tuned using steepest 
descent to minimize the cost function 

 
with  the configurations in the training set.
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• Two important considerations for the 
design of the learnifold:
• respect symmetries
• insure correctness

• For symmetries we force the network to 
respect translation symmetry using a single 
scalar function , that computes the 
elevation for the field located at position 0 
on the lattice. The elevation for position x 
is then computed using , where T is 
the translation that brings x to 0.

• To insure that the manifold is equivalent 
to the original manifold the asymptotic/
periodicity conditions need to be satisfied. 
We did this by using as input periodic 
functions of the field. 

f(ϕ)

f(Tϕ)

Contour Integration Rules!

5 / 18



Case study: massive Thirring 
model in 1+1D
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FIG. 3. The Jacobian for the learnifold for the 10 ◊ 10 ensemble (above) and for the 40 ◊ 10 lattice at µ/mf = 2.33 (below).
The left panels indicate the real part of the Jacobian and the right one its phase. In the row above we compare the fluctuations
of the Jacobian of the learnifold (blue) with the Jacobian induced by the flow (red). Note the dramatic reduction in the size of
the fluctuations.

distribution on it is multimodal and the Metropolis process becomes trapped. It is then crucial to provide additional
information about MT .

Much freedom exists in generating this additional set: configurations normally thrown away during thermalization
can be kept, and they can be generated in parallel. To cure the multimodality problem we need to include configurations
on MT that have large SR. For that we include in the training set configurations from an ensemble sampled from the
distribution e≠SR/·i , with ·i Ø 1. Sets with ·i > 1 sample higher-SR regions of MT than ·i = 1. We use ·i = 1, 2. It
should be emphasized that the ensemble generated for training is not su�cient for proper evaluation of any observable.
They are not thermalized, they are highly correlated and the ones obtained with ·i ”= 1 are not distributed correctly.

Since, as discussed above, the action is translationally invariant, a single flowed configuration can be used as a
total of V training points, where V is the space-time volume of the lattice. Thus each flowed configuration sampled
is translated to V other configurations. Since, in practice, the most time-consuming step of the algorithm is the
generation of configurations on MT , this multiplication of the training set is critical in making this algorithm practical.

Once the training configurations are obtained, the feed-forward network is trained by minimizing the cost function.
We use a network with 3 hidden layers, each consisting of 10 nodes. This choice is somewhat arbitrary and we have
not yet fully investigated the behavior of the algorithm as the number of nodes and layers is changed. The training is
accomplished by performing stochastic gradient descent to minimize the weights wij and biases bi with respect to the
cost function. Specializing Eq. 11 to our specific case:

C(w, b) =
ÿ

k

5 ÿ

‹

!
Im Ã‹(0, 0) ≠ Im A‹(0, 0)

"2
61/2

(25)

where the sum over k is taken over all training points, and the sum over ‹ is over the Lorentz indicies. By minimizing
the C(w, b), we minimize the distance between the LT and MT .

Once the gradient descent is complete, f is used to define LT through Eq. (20). This manifold is parameterized by
the real plane, and so we can perform an importance sampling on this manifold in the same manner as for a flowed
manifold.

The previous parameterization, based on deforming the domain of integration via flow, required computing the
Jacobian when performing importance sampling. The LT parameterization is found to result in Jacobians that have
small fluctuations as can be seen from Fig. 3. Computing the Jacobian is expensive, but since its fluctuations are
small it is preferable to ignore it when performing importance sampling, and include it in observables via reweighting.
The Jacobian may be computed by direct application of the chain rule. In practice, it is su�cient to compute the
Jacobian via finite di�erencing, that is, computing ˆf(„i)/ˆ„j ¥ (f(„i + �”ij) ≠ f(„i))/� for small � by feeding the
values „i + �”ij and „i through the network. We take this approach here.

After the network is trained and the manifold LT defined by it is specified, we use the Metropolis algorithm applied
to the (real) parameterizing variables „i and the e�ective action Se�(„) = Re S[„̃(„)], the real part of the Euclidean



Results

�27

11

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

⌦ e�
iS

I
+
iI
m

lo
g
d
et

J
↵

µ/mf

RN

M = A0(x) + iA
LT

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

hn
i/

m
f

µ/mf

RN

M = A0(x) + iA
LT

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

⌦ e�
iS

I
+
iI
m

lo
g
d
et

J
↵

µ/mf

RN

M = A0(x) + iA
LT

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

hn
i/

m
f

µ/mf

RN

M = A0(x) + iA
LT

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

⌦ e�
iS

I
+
iI
m

lo
g
d
et

J
↵

µ/mf

RN

M = A0(x) + iA
LT

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5 3 3.5

hn
i/

m
f

µ/mf

RN

M = A0(x) + iA
LT

FIG. 4. Èe≠iSI +i Im log det J Í and ÈnÍ/mf as a function of µ/mf for Wilson fermions on lattices of size (top) 10 ◊ 10, (center)
20 ◊ 10, (bottom) 40 ◊ 10 with amf = 0.30(1). The dashed curve represents the free fermion gas with the same mass. The
darker points in the 20 ◊ 10 graphs (middle row) correspond to a learnifold trained on MT with Tflow = 0.4 whereas the lighter
use Tflow = 0.2.
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Conclusions
• Thimbles and holomorphic flow manifolds are only one option for 

complex deformations. There is a large degree of freedom in 
choosing complex deformations to address the numerical 
challenges specific to the system of interest (with new challenges 
and opportunities).

• Machine learning can be used to define such a manifold and match 
it to manifolds with reduced sign fluctuations. The resulting 
manifolds are correct by design and the success can be measured by 
the size of the sign fluctuations, which is easy to test aposteriori.

• For the test case we showed that the sign problem is alleviated 
allowing us to investigate new parameter space. The physical 
results confirm that we correctly sample the configurations space. 
Sampling is fast, the Jacobian can be reweighed, and the cost is 
dominated by generating training set. 
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