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Motivation

e Physical models of interest require non-perturbative
calculations that have a sign problem:

e QCD at finite baryon density (RHIC, neutron star
structure, etc)

e Real time dynamics for strongly coupled QFT
e Strongly correlated electrons (Hubbard model, etc.)

e Complex path methods are likely to work for a large
class of problems.



QFT on the lattice

e The partition function is expressed as a path integral

e The fields are sampled on a grid; difterential operators
are replaced by finite difference ones
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* The partition function is a many-dimensional integral
over real variables

* The integrand has no singularity for both bosonic
and fermionic theories



Monte-Carlo sampling

 QFT correlators are statistical averages
1
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e Estimate using importance sampling
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e Stochastic errors decrease with sample size
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Sign problem

e When the partition function is not real direct
Monte-Carlo sampling is not possible

* The usual workaround involves rewezghting
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Sign problem

A sign problem appears when the phase average
is nearly zero (or zero): e ®1(®) | 4 e7¥51(#N) « N

* The cost of the calculation is inversely 1l
proportional to the phase average: N <e—i51(¢>>

* For example in QCD
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e In QCD the calculation cost increases
exponentially with the volume



Contour deformation
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e Generalized Cauchy’s theorem
e Deformation in the field variable space (lattice geometry unchanged)



Holomorphic gradient flow
and Lefschetz thimbles




Im(z)

Holomorphic gradient flow
and Lefschetz thimbles
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Holomorphic gradient flow
and Lefschetz thimbles
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Holomorphic gradient flow

and Lefschetz
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[.efschetz thimble

e 9(@122) (pea] plane) e 9(7:22)  (gaussian thimble)

S(z1,22) = 25 + x5 + 10ix1 + 20izs + iz122/3
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(Generalized thimble method

\ e Most systems require
multiple thimble

e Thimble decomposition

< / is hard
\ | | /7
)b ¢ % / / e Use the manifolds
7 generated by the

holomorphic flow
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Basic idea
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15



Basic idea
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* The differential equations are integrated for a fixed
amount of “time”: Taoyw

* This is expensive, especially the calculation of |

e Sampling is done based on the effective action and
the phase is reweighted at the end

Sett(x) = Sp(z(x)) — In |det J(x)|
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Numerical challenge

e On the flow manifolds sampling is done based on the effective action

Sett(x) = Sr(z(z)) — In | det J(x)
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e For each step integrate a set of differential equations to get z and ]
e This is expensive, especially the calculation of J and det J
e To address this problem we used

e improved sampling algorithms (avoid computing J or det J)

e fast estimators for det J

e numerically cheaper integration manifolds
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[.earnifold

e Generate few configs on the
generalized thimble manifold

e Use neural nets with appropriate
symmetries to interpolate

e Integrate over the learnifold, the
manifold defined by the trained

neural net
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We use a feed-forward
network and train it using
supervised learning

The networks learns quickly
about the constant shift,
further improvements are slow
Most of the cost is in
generating the seed
configurations with much less
required for training
Integrations over learnifold is
fast
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[earnifold parametrization
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e The Learnifold map is

¢ = @=+1(e)

e For each real field a imaginary
shift (elevation) is computed
based on the current config

e The elevation function is
determined by the neural
network

e The elevation is position
dependent
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[earnifold parametrization

e The parametrization does not
allow for “folding” manifolds,
but this is not too restrictive

e The Jacobian for this map is
better behaved than the
generalized thimble manifold
— we can disregard it during
sampling and “reweight” its
contribution

e The map induced by the flow
creates “pockets” when
multiple thimbles contribute
and the distribution is usually
multimodal

e The Learnifold map is
smoother and avoids trapping
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Feed forward network

Input
real field values

output

hidden layers imaginary part for A, (o)



Feed forward network

e The feed forward network is defined by its
topology and parameters: on each link we

have a weight wi(‘j‘), connecting node i on

layer k with node j on layer k+1
e At each node we have a bias b™

e The result is computed iteratively; starting
from the input layer towards the output
v = g(bi! 4 3 wlyK)
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where o(x) = log(1 + e*) is a smooth step
function
e The parameters are tuned using steepest

descent to minimize the cost function
C(w,b) =2 19() - ¢l
|

with ¢, the configurations in the training set.
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Learnifold symmetries

e Two important considerations for the
design of the learnifold:

® respect symmetries
® INSure COrrectness

e For symmetries we force the network to
respect translation symmetry using a single
scalar function f(¢), that computes the
elevation for the field located at position o
on the lattice. The elevation for position x
is then computed using f(Tg), where T is
the translation that brings x to o.

e To insure that the manifold is equivalent
to the original manifold the asymptotic/
periodicity conditions need to be satisfied.
We did this by using as input periodic
functions of the field.
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Case study: massive Thirring
model in 1+1D
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Discretization (compact A’s)

,/Co\mplex for p=0

S = Ng (912 Z(l —cos A, (x)) — vlogdet D(A))

25



< AN O A<

_
(£ 79p Sop)w]

4202A_1

|
(r 10p So1)ey

< AN O A<

_
(£ 19p Sop)w]

42024

(£ 19p mé m




o o
W~ (@)
_—

6—73,5’1+z' Imlogdet J>

o
N

o o o
M~ (@) oo
T T T T

e—iSI—i—i Imlogdet J>

o
N




Conclusions

e Thimbles and holomorphic flow manifolds are only one option for
complex deformations. There is a large degree of freedom in
choosing complex deformations to address the numerical
challenges specific to the system of interest (with new challenges
and opportunities).

e Machine learning can be used to define such a manifold and match
it to manifolds with reduced sign fluctuations. The resulting
manifolds are correct by design and the success can be measured by
the size of the sign fluctuations, which is easy to test aposteriori.

e For the test case we showed that the sign problem is alleviated
allowing us to investigate new parameter space. The physical
results confirm that we correctly sample the configurations space.
Sampling is fast, the Jacobian can be reweighed, and the cost is
dominated by generating training set.
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