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Applications of
machine learning to
computational physics
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Based on arXiv: 1609.09087,
1812.01522, 1712.03893
and works in progress and preliminary



https://scholar.google.co.jp/citations?user=LKVqy_wAAAAJ

Self-Introduction

Who and what am 1?

1. | have been working on lattice gauge theory
1. Walking technicolor. arXiv:1411.1135
2. U(1) axial anomaly at finite temperature with OV/DW. arXiv:1612.01908, ...
3. Finite temperature QCD with magnetic field. arXiv: 1904.01276 ...
4. lattice QED in 2D via quantum computing. arXiv: 2001.00485
2. Machine learning (today’s topic, some of them are on-going)
1. Detection of phase transition. arXiv:1609.09087, 1812.01522
2. Gauge configuration generation. arXiv: 1712.03893 + a
3. QCD Spectral function
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Machine learning?




Akio Tomiya

What is machine learning?

A way of theoretlcal hlgh-energy phyS|cs
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parameters

\. The standard model
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https://www.usqcd.org/computing.html

Akio Tomiya

What is machine learning?

In physics language, modeling and _

“Unknown

[ “Prediction” (outside of data)

Input layer | Hidden layer i Output layer

= A I .
‘ ‘\ XV‘Z Am“‘"
"»' "& '

Neural network (or some model)

Determine
parameters

T results by style-GAN
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Akio Tomiya

Example: neural network?

Fit ansatz with multi-nested linear/non-linear func. with parameters

[ (0.1 A
Input X = 8(5) vector
\ ¢
\_ Y,
Answers Dog asRae vgcr:dor Dog (1.0)' T
Cat ﬁ Cat (O, Y ans vector

0.1
X = f:“Neural net.” y
ars

0.5 S

Neural network is a parametrized
non-linear map between two vector space
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Akio Tomiya

What is the neural network?

Fit ansatz with multi-nested linear/non-linear func. with parameters

( - ;’-"ﬁ f()_ 1\ \
’k | Flatten 0.0
Input A Ji ’g » X = 0'5 vector
4 Dog Regard Dog (1,0)' A
Answers as a vector . Vo vector
\ Cat ﬁ Cat (0,1 )
(Neural network )

XA VoY F(x
.‘ .‘L.‘A.‘A.‘A. O f (x ) P t
X ASEICRILRILRILIALIRARL, T o arameters
;ié./\!/% ./‘\!/‘S!' W, (matrix)
Flow of data . b ‘

FAT) = o(Wao(Wos(W,6(Wy X + B )+ b )+ bo)+ b

o(V"): element-wise nonlinear function (eg tanh), “activation”
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Akio Tomiya

What is the neural network?

Fit ansatz with multi-nested linear/non-linear func. with parameters

2 A’A.A’?

4 P (0.1) A
£ Flatten
Input GO - X = )Y vector
VR .
e \ )/

\_ J
4 Dog Regard Dog (1,0)' )
Answers as a Vector - V...  vector
_ Cat ﬁ Cat (0,1) W,
(Neural network N

X LRAYR, f (X)) Parameters
OA%' W. (matrix)
Flow of data > g 0

FAT) = o(Wao(Wos(W,6(Wy X + B )+ b )+ bo)+ b

o(V"): element-wise nonlinear function (eg tanh), “activation”

E

‘Training” = optimization
Minimize “distance” between f x)and Yy for data in dataset by tuning 0
0 ans

3
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1.Detection of phase transition

arXiv: 1609.09087(w/ A. Tanaka),
1812.01522(w/ K. Kashiwa, Y. Kikuchi)

10



Can “Al” detect phase transition? = * ™

We train Neural net as a thermometer (Classification problem)

A.Tanaka AT 1609.09087
K. Kashiwa, Y. Kikuchi AT 1812.01522

Q. Can Al detect phase transition?

With fewer information... Juan Carrasquilla & Roger G. Melko (2017)

LN

configurations, temperature

A. YES!
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Can “Al” detect phase transition? = * ™

Neural net as a thermometer (Classification problem)

A.Tanaka AT 1609.09087
K. Kashiwa, Y. Kikuchi AT 1812.01522

Input = Ising configurations (by MCMC) with inverse temperature B<(Bmin<Bcr<Pmax)
Output = A class of temperature (Discretized inverse temperature)

NN is trained as a “thermometer”
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Can “Al” detect phase transition? = * ™

Neural net as a thermometer (Classification problem)

A.Tanaka AT 1609.09087
K. Kashiwa, Y. Kikuchi AT 1812.01522

Input = Ising configurations (by MCMC) with inverse temperature B<(Bmin<Bcr<Pmax)
Output = A class of temperature (Discretized inverse temperature)

NN is trained as a “thermometer”

{Gi }] 7 :({{J,-}‘ Ising configs on L x L lattice.} ]
761 Fiaton [t o e
.:,fi O &Feed> Tq é 0,1]™ : hidden units
ﬁ‘g:&‘“ . <( Fully-connected (Dense) layer ‘/V1
]'th conf. ith \ Softmax activation
inv. Temp. B_ ﬂans | UK € 0,1]™ : output
j i
“Distance” (cross entropy) K=1,-,N,
EGi) & 2, S x (logye({o))) 0 <yg <1

jeConf

Minimize E, NN becomes a thermometer but we focus on W4
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Neural net captures phase transition *° "™

Heat map of weight W In second layer has structure

A.Tanaka AT 1609.09087
K. Kashiwa, Y. Kikuchi AT 1812.01522

System size | B. (CNN) B¢ (FC)
8%8 0.478915 | 0.462494
16x16 0.448562 | 0.433915
32%32 0.451887 | 0.415596

Heat map of WV,

.. L— BEXaCt . (0.440686
__after trainin
70 - 0 0.2 A W7
average over oo e 1
N verticalldir. )
g 301 § 0.6 .
107 1.0 Poe 00,0

After training, W1 gets some pattern, especially there is a border around critical temp.

From detail analysis, output of WO is correlated to magnetization
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Summary for detection

After training, Neural network captures Tc

A.Tanaka AT 1609.09087
K. Kashiwa, Y. Kikuchi AT 1812.01522

e After training neural networks as a thermometer, it captures phase boundary

 Qutput of first layer is correlated to magnetization, so second layer gets a
pattern.

 This framework actually works also for 3-states Potts model (skipped)

* If make it deeper with convolution layers to improve the temperature
prediction, but the pattern of weights becomes blurred

e Applicability for gauge system? How can we input data?

Cf
P Shanahan, D Trewartha, W Detmold 1801.05784
S Wetzel, M Scherzer 1705.05582
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2. Configuration generation

for gauge theory

arXiv: 1712.03893 (w/ A. Tanaka)
and work in progress (w/ A.Tanaka, Y. Nagai)

16



Markov Chain Monte_carlo Akio Tomiya

It enables us to calculate observables

e Quantum fired theories, lattice QCD, are written by very high dimensional integral

(O[4]) = %J@q/)e-ﬂdﬂ O]
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Markov Chain Monte_carlo Akio Tomiya

It enables us to calculate observables

e Quantum fired theories, lattice QCD, are written by very high dimensional integral

(O[@]) = J@¢e—5[¢l Ol¢]
|

G = do. :Very high dimensional integral
¢ H P ~ 1074 dim

Markov chain with P[¢] = %e—S[f/)]

We can calculate expectation values by using Markov chain Monte-Carlo!
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Markov Chain Monte_carlo Akio Tomiya

It enables us to calculate observables

e Quantum fired theories, lattice QCD, are written by very high dimensional integral

(O[4]) = ZJ@cﬁe-SW O]
|

Gh = do. :Very high dimensional integral
¢ H P ~ 1074 dim

— I O + O I Markov chain 1
N zk: [¢k] o ( \/N) Monte-Carlo with P[¢] = Ee_S[‘ﬁ]
e |t is difficult to estimate expectation values using simple numerical
integral like the trapezoid method.
 Markov chain Monte-Carlo can do it, independent to the dimensionality!
e |F a system has fermions, cost becomes expensive...

e \We make this cheaper via “self-learning algorithm?” in lattice gauge theory.
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Exact algorithm is needed

Self-learning Monte Carlo (SLMC) is exact

" J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137)
SLMC fOr Spln SyStemS Accept/Reject Proposing part

o B(H[S, 1- Hegff[ \H) 0 : tunable parameter = coupling

Oy Se| SO

Update using
effective model
this must satisfy detailed balance

P(Sk’lSk) — min

" o PHISI-HYS:))

Corrected by modified
Metropolis test

This is an exact algorithm: It gives correct configurations and
if the effective model is far from the target system, acceptance is zero.

Intuitively,
Self-learning MC = Metropolis + reweighting on-fly + update with tunable param 6.

Other possibility: FLOW based model (M. S. Albergo et al.1904.12072)
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https://arxiv.org/abs/1610.03137

Exact algorithm is needed

Self-learning Monte Carlo (SLMC)

" J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137)
SLMC fOr Spln SyStemS Accept/Reject Proposing part

o B(H[S, 1- Hegff[ \H) 0 : tunable parameter = coupling

Oy Se| SO

Update using
effective model
this must satisfy detailed balance

P(Sk’lSk) — min

" o PHISI-HYS:))

Corrected by modified
Metropolis test

This is an exact algorithm:
If the effective model far from the system, acceptance is zero.

Testcase

H=-J Z SiS; — K Z SiS;SkSI, No “efficient” update because of 2nd term

(7) ijklel]
Heg = Eo — Ji Z i Ising model with parameter J 1
(i , which is determined by fitting!
S, = +1 (no fancy ML is needed!)

This has effective update
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Exact algorithm is needed

Self-learning Monte Carlo (SLMC)

" J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137)
SLMC fOr Spln SyStemS Accept/Reject Proposing part

— ﬁ( H| S = ff[ ) 0 : tunable parameter = coupling

0f (S|S0

Update using
effective model
this must satisfy detailed balance

P(S..|1S,) = min
(i1 Sp) o ~PHISI=HELS])

Corrected by modified
Metropolis test

This is an exact algorithm.

Autocorrelation function Dynamic Critical exponent
Testcase S — R

= local
|- . Self-learnin&
* Naive-Wolff

=—a |ocal
7000| | e—e Self-learning
e e Restricted

0.030

H=-J) 8S;—-K Y 5SS,
(27) ijklel] 0.020]

6000

5000}

o o — 9
20 40 60 80
&~ 4000}

0.015},

Heﬂ‘ = EO — jl Z SZSJ 00

0.010}%

<Zj>]_ 2000}
0.005} 1000}
SZ — :|:1 0.000f s i s s s ' ' . 0o 50 100 150 200 250 300 3
0 100 200 300 400 500 600 700 80! I |
At
24 time efficient Very mild scaling
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Exact algorithm is needed

QCD with Self-learning Monte Carlo

work in progress Collaborate with
. Akinori Tanaka (Riken AIP/ iTHENS)
SLMC for lattice QCD Yuki Nagai (JAEA/ RIKEN AIP)

0 : tunable parameter = coupling

o —(SLU=S5 U, )

P(Uk/‘ Uk) = Imin 1 —(S[Uk] ff[Uk]) Q (kal Uk)

Setup: SU(2) plaquette action + staggered quarks with ma = 0.5
Effective action = hopping parameter expanded action = pure-gluonic, heatbath

S[U] — ﬁpl +l/_j(Dstag + m)l//

Our choice: Seff[U] = ﬁ +5rec

Parameters determined by HMC with linear regression
or we can use SLMC (“self-learning” way of use)
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Preliminary result

QCD with Self-learning Monte Carlo

work in progress Collaborate with
. Akinori Tanaka (Riken AIP/ iTHENS)
SLMC for lattice QCD Yuki Nagai (JAEA/ RIKEN AIP)

0 : tunable parameter = coupling

o —(SLU=S5 U, )

., 0
P(Uy|Up) =min| 1, TR Qi (Up | Uy

Setup: SU(2) plaquette action + staggered quarks with ma = 0.5
Effective action = hopping parameter expanded action = pure-gluonic, heatbath

Observables (M=SLMC, m=HMC, M=quenched) ma=0.5, L=4

3.5 1
HB(guenched) 40 - HB(quenched) HB(quenched)

30 4 Em SUMC N S MC 3.0 - e

016 018 020 022 024 026 ' 002 004 006 008 ' 04 02 0.0 02 0.4 06
plaquette rectangular Polyakov loop

L] [ ] ——
So far so good
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3. QCD spectral function

via sparse modeling

Work in progress, very preliminary

A. Tomiya




QCD spectral function?

It contains everything, but we cannot obtain

Two point functions G(t) can be calculate on the lattice,

G(7) = (0(2)0"(0)) .

Corresponding QCD spectral function p(w) contains
every information of QCD for that channel,

G(7) = jda)K(T, w)p(w) K(z, ) ~ cosh: kernel

Practically, we can not obtain p because,

Discretizel GT _ 2 KT,a)pw

1000000000 f———————F T T T T 7
““““““““““ — n O W n
100000000 |- ]

0.14 7 - mock spectral function

0.12 1

0.10 1

K unknown

~ known g Aol
H :::“::\Q(w/ j:;jkﬂ(“ﬁ)

\
0.10000000 |

0.00 1
wwwwwwwww 0

000000010 |-

4 5 6

Lack of information to determine p from G (“ill-posed problem”) ““
Maxima entropy method (MEM; Asakawa et al.) has been used = Bayesian analysis
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Sparse Modeling?

Fitting with L1 regulator (=LASSO, least absolute shrinkage and selection operator)

Apply the singular value decomposition (also used in MEM),

K=USV'

U . V/' Orthogonal (unitary) mat.

S Rectangular diagonal
matrix

G=U'G |
Intermediate rep.
ﬁ — VT P (IR basis)

TR e

)(2(15) — ‘ G _ Sﬁ ‘% Naive chi square

Overfit the noisy data

Modify - Chi ith L1
q Lip; ) =|G—-S5p \% +A1p], regulator (LASSO)

using Lagrange mult.

And minimize this L.
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Why L1 regulator works?

L1 regulator can kill ambiguities well = sparseness

Example
. A
Given Eq. (a; ap) ( X ) = constant
2
w/ L2 constraint w/ L1 constraint
. —>
“Constraint’  IMIN | X |, min | X x|,
A A
— 2 2 x| =
Definition |X|2—\/x1+x2 | x|, = x|+ [x]
X2
solutics(n1
Solution: |
""'.'.'.‘."."::::"éonstraint
x120, x220 x2 = 0 (sparse)

Even if the equation has statical noise,
a solution with L1 constraint is robust (insensitive to noise)

Akio Tomiya
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Sparseness and LASSO Akio Tomiya

Minimize chi-square + L1 constraint in SVD basis

o Ohtsuki et al. 2017
Original Problem: for cond. mat.

We want to determine O(1000) points of p from O(10) data

This means, O(10) points of p in some basis can be determined
because we don’t have information.
BUT, in SVD basis, the spectral function is sparse!

ock spectral function

| v —— == known
nown | [sl 0000 0]

((((((((((((((

~

0.14 1

0.12 4

; 0.10 1

- - known |G 05, 000 0| |e unknown o

f 0 0 5000 ]

000001000 [ ] 0.04 1
osommnio [ 1 3 0.02 - J k/
- 0(10) 0(10%):
0000000 ) 0 1 2

Ry

So, p can be obtained by minimizing,

L(p; ) = |G —Spl5+41p],
and, _
p=Vp

(In practice, we add positivity constraint for p to L.)
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(very) Preliminary results Akio Tomiya

Mock data + noise: it is well reconstructed ...?
Mock data (vector ch.) from PRD65, 014501(CP-PACS), noise level from Asakawa et al. )

(w)=3 72 I'y(w)m,
Pin i p(wz_mi)2+ri(w)mi . mz dm? 3 m,=0.77, m,=0.14, F,=0.142,
Fp(a))IK—z 11— > 0(w—2mw).
1 a, 1 T, @ wy=13, 6=02, «a,=023,
+g 1+; |+ (wo—a))/5 . J
k e
integration +@Gaussian noise - Sparse modelin
mock data > == S S e reconstr
P( ) —wkena” G oo G+noise iavppass> Plreconstruct)

\ Mock spectral function Reconstructed spectral function /

0.14 1 —— mock spectral function 0.14 1

ﬂ — preclA)
0.12 4 012 1
" PorgnalA)

0.10 1 0.10 1

0.08 1 0.08

0.06 1 0.06 1

0.04 A 0.04 A

0.02 + -/ \/ 0.02 A

0.00 - 0.00 - so far so good

0 1 2 3 4 5 6 0 1 2 3 4 5 6
w (GeV) w (GeV)

| Prec(®) = Prroct(@) |, = 0.1071
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Su m m a ry Akio Tomiya

Machine learning provides us new techniques

1. Neural network can detect phase transition in classical spin chain

2. SLMC can generate meaningful gauge configurations

3. Sparse modeling can reconstruct QCD spectral function (for mock data though)

Todo:

5. Application of SLMC to physical system; right top corner of the Columbia plot

6. Improve SLMC by adding more and more terms, neural net may help + extend to SU(3)

/. More test on sparse modeling and apply to real lattice gcd data

Comment: - Our community should discuss systematic error from

ML techniques, if it is not exact (Benefit of LQCD is quantitativity).
- How can we control or evaluate error?

Thanks!
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Backup



Akio Tomiya

Results 2/2

Output of first layer ~ Magnetization

K. Kashiwa, Y. Kikuchi AT 1812.01522

Output 1st layer= (x, x; x))

Hidden layers
| |
B N

|
o

|
oo

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
magnetization

Scatter plot for output of 1st layer and magnetization
-> X is correlated to the magnetization

(automatically captured)

This means, W+ represents correlation between
temperature and magnetization!
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Markov Chain Monte_carlo Akio Tomiya

It has Inefficiency from correlation between samples

N

1 1
(01g]) =— D, Olh] + O )

k ]Vindep

N
]Vindep — 7

F(r) = —— Z (Ol — O)Olp] - 0) ~ €~ Mac

' or Tac measures S|m|Iar|ty of conflguratlons
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Effect of long autocorrelation

Autocorrelation makes signals/noise ratio bad

N

Data from conf

Nf=3, standard staggered
with magnetic field
L>XN,=16>x 4
ma = 0.03

]Vindep — I

7:ClC

Critical temp.

Z : Dynamic critical exponent  (see 1703.03136)
T ~Y 52 ~Y LZ .
ac Tac: Algorithm dependent (N. Madras et. al 1988)

If we find an algorithm with smaller z (or shorter tac),
it enables us precise/large scale research around the critical regime!
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Markov Chain Monte_carlo? Akio Tomiya

If detailed balance satisfied, we can sample using it

A key concept is the detailed balance condition:

If an update algorithm P(.|.) satisfies

P(¢p| pe™>'% = P(¢py | pyye 1]

it will give configurations with a desired distribution (skip proof)

!
P () — ~S[¢
oD = g
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We have to fight for autocorrelation! * ™

Machine Learning techniques could reduce autocorrelation

<0[¢]>—iﬁ‘,0[¢]+0< L)
e

indep

27,

]Vindep —

L) =— Z (Oldyy] — O)Olhy] — 0) ~ ™"

T,c is given by an update algorithm (N. Madras et. al 1988)

e (Correlation between generated configurations are estimated by
autocorrelation time 7.

* Autocorrelation time 7, depends on an update algorithm

* If 7,.becomes half, statistics becomes effectively double in same cost in time!

| attempt to generate configurations using machine learning!
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Exact algorithm is needed

QCD with Self-learning Monte Carlo

work in progress Collaborate with
Akinori Tanaka (Riken AIP/ iThems)
Yuki Nagai (JAEA/ RIKEN AIP)

e _(S[ Uk’: _Seff:Uk’])

P(U,|U) = min| 1, RECTARHTIR Q. (Up | Up)

Setup: SU(2) plaquette action + staggered quarks
Effective action = hopping parameter expanded action, heatbath

Autocorrelation (M=HMC, m=SLMC)

—— HMC
—— sLMmC

—— HMC
—— sLMC

g

Also good
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Exact algorithm is needed

QCD with Self-learning Monte Carlo

work in progress Collaborate with
Akinori Tanaka (Riken AIP/ iThems)
Yuki Nagai (JAEA/ RIKEN AIP)

e _(S[ Uk’: _Seff:Uk’])

P(U,|U) = min| 1, RECTARHTIR Q. (Up | Up)

Setup: SU(2) plaquette action + staggered quarks
Effective action = hopping parameter expanded action, heatbath

# of operation of (D[U] +m) ™"

Acceptance
HMC : 90% 26
SLMC : 60% ]
Bad news: now it works only form > 1

Stay tuned
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QCD speCtraI funCtion? Akio Tomiya
QCD with Self-learning Monte Carlo
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Introduction

What does “Machine learning” give us?

What supervised learning does (~ deep learning, neural nets):
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Introduction

What does “Machine learning” give us?

What supervised learning does (~ deep learning, neural nets):

S

“White box” = “model” _ _
-Parametrized function (neural nets), a fit function

5
0 fy®) - o
= {parameters) 4

L{
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Introduction

What does “Machine learning” give us?

What supervised learning does (~ deep learning, neural nets):

>
0—

L,{

(H) : “Distance between correct answer to current output”
KL
(cf: chi square in fitting, 6 = a set of parameters)

“White box” = “model”

-Parametrized function (neural nets), a fit function
\ 5
Jo(x) "0

= {parameters) 4

e Machine learning (> deep learning) basically, make a “map” between data and output

* |t could be deterministic (neural nets) or stochastic (generative models, later)
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Unsupervised learning in a nutshell **™

Information comes from a probability distribution

0yDy(P || Py) = — J@xP(x)Oe log(Py(x))

_ J@xp(x)ag(—Hg[x] — log Zy)

1 —H,[y]
= | DxP(x)(0,H,[x] - Z( Dydge"0"T))
0

= J@xP(x)OgHe[x]
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Unsupervised learning in a nutshell **™

Inverse of Ising model ~ Boltzmann machine

Eg. Generalized Ising model
(spin glass)
O Spln
Hylo]| = Z KlJGZG K, coupling

What physicists
want to do

Boltzmann machine:
guess a set of parameters 0

0 = {K., f| parameters}
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Unsupervised learning in a nutshell **™

Unsupervised

Eg. Generalized Ising model
(spin glass)

PQ[G] = — e Holol c;: Spin

Ze K;: parameters
Generative models

fit (guess) the coupling "

0/ P,

e Once determine a coupling K (= training), we can use it.

e Sampling from parametrized distribution is needed
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