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Self-Introduction
Who and what am I?

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

1. I have been working on lattice gauge theory

1. Walking technicolor. arXiv:1411.1155

2. U(1) axial anomaly at finite temperature with OV/DW. arXiv:1612.01908, …

3. Finite temperature QCD with magnetic field. arXiv: 1904.01276 …

4. lattice QED in 2D via quantum computing. arXiv: 2001.00485


2. Machine learning (today’s topic, some of them are on-going) 
1. Detection of phase transition. arXiv:1609.09087, 1812.01522 
2. Gauge configuration generation. arXiv: 1712.03893 + α 
3. QCD Spectral function

Deep learning and 
physics 

(Textbook in Japanese) 
Now translating



1.Machine learning? 
2.Detection of phase transition 
3.Configuration generation 
4.QCD spectral function 
5.Summary

Outline
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(work in progress)

(work in progress)



Machine learning?
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What is machine learning?
A way of theoretical high-energy physics

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

Data, input
Prediction (outside of data)

https://www.usqcd.org/computing.html

Determine 
parameters

The standard model

“Unknown 
theory”

generate

“mimic”

https://www.usqcd.org/computing.html
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What is machine learning?
In physics language, modeling and prediction

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

“Prediction” (outside of data)
Data, input

Determine 
parameters

Neural network (or some model)

“Unknown 
theory”

generate

“mimic”

results by style-GAN
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Example: neural network?
Fit ansatz with multi-nested linear/non-linear func. with parameters
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Application of ML to physics 

Flatten
⃗x =

0.1
0.0
0.5
⋮

Input

Answers
Dog
Cat

Regard as a vector Dog
Cat

(1,0)⊤

⃗y ans(0,1)⊤ }

vector

vector

⃗x =

0.1
0.0
0.5
⋮

⃗y ansf:“Neural net.”

Neural network is a parametrized 
non-linear map between two vector space
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What is the neural network?
Fit ansatz with multi-nested linear/non-linear func. with parameters

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

Flatten
⃗x =

0.1
0.0
0.5
⋮

Input

Answers
Dog
Cat

Regard as a vector Dog
Cat

(1,0)⊤

⃗y ans(0,1)⊤ }

vector

vector

main : 2019/5/24(14:30)

3.1 誤差関数とその統計力学的理解 061

図 3.5 深層ニューラルネットワーク。各層の非線形関数 σ• を作用させた出力値は、統計力
学的な立場では期待値を表します。

− logQJN (d⃗|⟨⃗hN−1⟩) = L(d⃗, ⟨⃗hN ⟩), ⟨⃗hN ⟩ = σN (JN ⟨⃗hN ⟩+ J⃗N )

(3.1.52)

のように書けます。簡単のために J⃗ の部分を略して書くと

⟨⃗hN ⟩ = σN
(
JNσN−1

(
. . . J2σ1(J1x⃗) . . .

))
(3.1.53)

と d⃗の差を計算することになります。通常の深層学習の文脈では

J = W (3.1.54)

J⃗ = b⃗ (3.1.55)

と表現される場合が多く、それぞれ重み (weight)W、バイアス (bias) b⃗と
呼ばれます。
ここまでで、ニューラルネットワークが「導出」されました。次の節で

は、いかに学習を進めるかを見ていきます。

⃗x ⃗fθ( ⃗x )

Flow of data

⃗fθ( ⃗x ) = σ(W3σ(W2σ(W1σ(W0 + ⃗b 0) + ⃗b 1) + ⃗b 2) + ⃗b 3)

Wi
⃗b i

(matrix)
Parameters

θ}

σ( ⃗v ): element-wise nonlinear function (eg tanh), “activation”

W0 WW W W W WNeural network

⃗x
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What is the neural network?
Fit ansatz with multi-nested linear/non-linear func. with parameters

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

Flatten
⃗x =

0.1
0.0
0.5
⋮

Input

Answers
Dog
Cat

Regard as a vector Dog
Cat

(1,0)⊤

⃗y ans(0,1)⊤ }

vector

vector

main : 2019/5/24(14:30)
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図 3.5 深層ニューラルネットワーク。各層の非線形関数 σ• を作用させた出力値は、統計力
学的な立場では期待値を表します。

− logQJN (d⃗|⟨⃗hN−1⟩) = L(d⃗, ⟨⃗hN ⟩), ⟨⃗hN ⟩ = σN (JN ⟨⃗hN ⟩+ J⃗N )

(3.1.52)

のように書けます。簡単のために J⃗ の部分を略して書くと

⟨⃗hN ⟩ = σN
(
JNσN−1

(
. . . J2σ1(J1x⃗) . . .

))
(3.1.53)

と d⃗の差を計算することになります。通常の深層学習の文脈では

J = W (3.1.54)

J⃗ = b⃗ (3.1.55)

と表現される場合が多く、それぞれ重み (weight)W、バイアス (bias) b⃗と
呼ばれます。
ここまでで、ニューラルネットワークが「導出」されました。次の節で

は、いかに学習を進めるかを見ていきます。

⃗x ⃗fθ( ⃗x )

Flow of data
Wi

⃗b i

(matrix)
Parameters

θ}

σ( ⃗v ): element-wise nonlinear function (eg tanh), “activation”

W0 WW W W W W

⃗fθ( ⃗x )Minimize “distance” between and ⃗y ans for data in dataset by tuning θ

Neural network

“Training” = optimization 

⃗x⃗fθ( ⃗x ) = σ(W3σ(W2σ(W1σ(W0 + ⃗b 0) + ⃗b 1) + ⃗b 2) + ⃗b 3)



1.Detection of phase transition
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arXiv: 1609.09087(w/ A. Tanaka), 
1812.01522(w/ K. Kashiwa, Y. Kikuchi)
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Can “AI” detect phase transition?
We train Neural net as a thermometer (Classification problem)

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

W0 W1x1 y1

yNoxNh

σ1

σL2

yKxa

σi

σ2

Q. Can AI detect phase transition?

With fewer information…

A. YES!

Juan Carrasquilla & Roger G. Melko (2017)

configurations, temperature

β =
1
T

K. Kashiwa, Y. Kikuchi AT 1812.01522
A.Tanaka AT 1609.09087
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Can “AI” detect phase transition?
Neural  net as a thermometer (Classification problem)

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

Input = Ising configurations (by MCMC) with inverse temperature  β∈(βmin<βcr<βmax)
Output = A class of temperature (Discretized inverse temperature)

NN is trained as a “thermometer”

K. Kashiwa, Y. Kikuchi AT 1812.01522
A.Tanaka AT 1609.09087
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Can “AI” detect phase transition?
Neural  net as a thermometer (Classification problem)

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

feed-forward neural network. Then, we will examine the weights and biases of the trained

neural networks, and attempt to identify the critical temperatures of two dimensional Ising

model and 3-state Potts model.

We generate 2000 Ising spin configurations at each temperature by employing the

Metropolis-Hasting algorithm. They are fed to a neural network along with the 20 target

temperatures. We implement two types of neural network architectures by using KERAS

package with TENSORFLOW as the backend: fully-connected and convolutional neural

networks.

The former consists of fully-connected hidden and output layers as follows:
2

6666666666666664

I =
n
{�i}

��� Ising configs on L⇥ L lattice.
o

#

8
<

:
Fully-connected (Dense) layer

Softmax activation

xa 2 [0,1]Nh : hidden units

#

8
<

:
Fully-connected (Dense) layer

Softmax activation

yK 2 [0,1]No : output

3

7777777777777775

(2)

Let us describe it in detail here. We denote input degrees of freedom by {�i} (i = 1, . . . , L⇥

L), which would be spins in case of Ising model. A hidden unit xa (a = 1, . . . , Nh) is given

by,

xa = softmax(w(1)
ai
�i + b

(1)
a
) :=

ew
(1)
ai �i+b

(1)
a

P
a
ew

(1)
ai �i+b

(1)
a

, (3)

where repeated indices are summed. w
(1)
ai

and b
(1)
a are weights and biases of the first layer,

respectively. In terms of weights w
(2)
↵a and biases b

(2)
↵ of the second layer, variables yK (K =

1, . . . , No) of output layer takes the same form as the hidden variables,

yK = softmax(w(2)
Ka

xa + b
(2)
K
). (4)

Based on the output {yK}, the temperature of input configuration is determined via

K
output ⌘ argmax

K

(yK), (5)

namely, the temperature ↵ with the highest “probability” yK is picked as the output tem-

perature. The training is implemented by tuning the weights and biases with the Adam

4

W0 W1

j-th conf.  with 
inv. Temp. β

Flatten 
&Feed

W0

W1

Output = A class of temperature (Discretized inverse temperature)

E(yK) ∝ ∑
j∈Conf

δβ,βans
j

x1 y1

yNoxNh

{σi}j

“Distance” (cross entropy)

0 < yK < 1× (−log yK({σ}j))

NN is trained as a “thermometer”

i = 1,⋯, L × L
a = 1,⋯, Nh

K = 1,⋯, No

σ1

σL2

yKxa

σi

σ2
βoutput

β

y

Minimize E, NN becomes a thermometer but we focus on W1

= βans
j

Input = Ising configurations (by MCMC) with inverse temperature  β∈(βmin<βcr<βmax)

K. Kashiwa, Y. Kikuchi AT 1812.01522
A.Tanaka AT 1609.09087
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Neural net captures phase transition
Heat map of weight W in second layer has structure

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

Figure 1. The weights in the fully-connected layer and their average after the training in case of

2D Ising model. The horizontal axes represent the temperatures K of input configurations. The

vertical axis in the left panel corresponds to components connected to hidden units in the neural

network. The vertical axis in the right panel shows average of weights for each K. The average

value of weights significantly changes around the exact critical temperature Kexact
c ' 0.4407.

lattice size L = 16, the number of hidden units Nh = 80, and No = 20 corresponding

to the 20 target temperatures. The critical temperature is exactly known to be K
exact
c =

1
2 ln(

p
2+1) ' 0.4407 [28]. The weights of second layer after the training is shown in Fig. 1.

In Ref. [4], the critical temperature was predicted by fitting the sum of the weights by

c1 tanh[c2(K �Kc)]� c3 with free parameters c1, c2, c3 for lattice sizes L = 8, 16, 32. Indeed,

the average of the final weights appears to behave like an order parameter (right panel of

Fig 1). We will discuss the detailed structure of the weights in the next section.

B. 2D 3-state Potts model

Before getting into the detail of learning mechanism of critical temperature of 2D Ising

model, we take a look at another example, 2D 3-state Potts model. The Hamiltonian is

given by

H({�i}) = �
X

hi,ji

�(�i,�j), (8)

where �i takes three values, a generalization of Ising spin �i. Hence, configurations {�i}

labeled by temperatures K are the inputs of neural network. The 2D 3-state Potts model is

known to exhibit the second order phase transition at Kc ' 1.0050 because of the fluctuation

6
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6

W0 W1
yK

W1

80units 20u.16x16

Flatten 
&Feed

{σi}
K. Kashiwa, Y. Kikuchi AT 1812.01522

A.Tanaka AT 1609.09087

After training, W1 gets some pattern, especially there is a border around critical temp.

From detail analysis, output of W0 is correlated to magnetization

average over 
vertical dir.

Heat map of 

β

y
βoutput

after training

ββ

W1
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Summary for detection
After training, Neural network captures Tc

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

• After training neural networks as a thermometer, it captures phase boundary


• Output of first layer is correlated to magnetization, so second layer gets a 
pattern.


• This framework actually works also for 3-states Potts model (skipped)


• If make it deeper with convolution layers to improve the temperature 
prediction, but the pattern of weights becomes blurred 


• Applicability for gauge system? How can we input data?

K. Kashiwa, Y. Kikuchi AT 1812.01522
A.Tanaka AT 1609.09087

Cf  

P Shanahan, D Trewartha, W Detmold 1801.05784

S Wetzel, M Scherzer 1705.05582



2. Configuration generation

16

arXiv: 1712.03893 (w/ A. Tanaka)
and work in progress (w/ A.Tanaka, Y. Nagai)

for gauge theory
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Markov chain Monte-Carlo
It enables us to calculate observables

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

⟨O[ϕ]⟩ =
1
Z ∫ 𝒟ϕe−S[ϕ] O[ϕ]

• Quantum fired theories, lattice QCD, are written by very high dimensional integral
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Markov chain Monte-Carlo
It enables us to calculate observables

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

⟨O[ϕ]⟩ =
1
Z ∫ 𝒟ϕe−S[ϕ] O[ϕ]

𝒟ϕ = ∏
i∈{ℤ/L}4

dϕi
: Very high dimensional integral 


 ~ 10^4 dim

P[ϕ] =
1
Z

e−S[ϕ]

• Quantum fired theories, lattice QCD, are written by very high dimensional integral

サンプ サンプ サンプ→ → → 

ϕ1 ϕ2 ϕ3

Markov chain with

We can calculate expectation values by using Markov chain Monte-Carlo!
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Markov chain Monte-Carlo
It enables us to calculate observables

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

• It is difficult to estimate expectation values using simple numerical 
integral like the trapezoid method.


• Markov chain Monte-Carlo can do it, independent to the dimensionality!

• IF a system has fermions, cost becomes expensive…

• We make this cheaper via “self-learning algorithm” in lattice gauge theory.

⟨O[ϕ]⟩ =
1
Z ∫ 𝒟ϕe−S[ϕ] O[ϕ]

𝒟ϕ = ∏
i∈{ℤ/L}4

dϕi
: Very high dimensional integral 


 ~ 10^4 dim

=
1
N

N

∑
k

O[ϕk] ± O(
1

N
) Markov chain


Monte-Carlo with P[ϕ] =
1
Z

e−S[ϕ]

• Quantum fired theories, lattice QCD, are written by very high dimensional integral
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Exact algorithm is needed
Self-learning Monte Carlo (SLMC) is exact

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

P(Sk′�|Sk) = min (1,
e−β(H[Sk′�]−Hθ

eff[Sk′�])

e−β(H[Sk]−Hθ
eff[Sk]) ) Qθ

eff(Sk′ �|Sk)

Accept/Reject

Update using 
effective model 
this must satisfy detailed balance

Corrected by modified 
Metropolis test

Other possibility: FLOW based model (M. S. Albergo et al.1904.12072)

J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137)
Proposing part

Intuitively, 
Self-learning MC = Metropolis + reweighting on-fly + update with tunable param θ.

θ : tunable parameter = coupling

This is an exact algorithm: It gives correct configurations and 
if the effective model is far from the target system, acceptance is zero.

SLMC for spin systems

https://arxiv.org/abs/1610.03137
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Exact algorithm is needed
Self-learning Monte Carlo (SLMC)

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137)
Accept/Reject

Corrected by modified 
Metropolis test

No “efficient” update because of 2nd term

Ising model with parameter J̃1

2

FIG. 1. (color online) Schematic illustration of learning pro-
cess (top panel) and simulating process (bottom panel) in
self-learning Monte Carlo.

namical exponent z in MC simulation.
Guided by these requirements, we now propose the de-

tailed procedure of SLMC method. As shown in Fig. 1,
SLMC consists of four steps: (i) perform a trial MC sim-
ulation using local update to generate a large number of
configurations, which serve as training data; (ii) learn an
e↵ective Hamiltonian He↵ from this training data; (iii)
propose moves according to He↵ in the actual MC sim-
ulation; (iv) determine whether the proposed moves will
be accepted or rejected based on the detailed balance
principle of the original Hamiltonian H. Steps (i) and
(ii) constitute the learning process, whereas steps (iii)
and (iv) are repeated in the actual MC simulation to
calculate physical observables.

We further outline how to implement step (ii) and (iii)
in actual simulations for a model to be presented below.
We use machine learning15 in step (ii) to train an e↵ective
Hamiltonian, which can be e�ciently simulated using a
global update method even though the original Hamilto-
nian cannot. Then step (iii) can be easily implemented
using this global update.

Model and results: To demonstrate the power of
SLMC, we study a classical model on a 2D square lattice

H = �J

X

hiji

SiSj �K

X

ijkl2

SiSjSkSl, (1)

where Si = ±1 is the Ising spin on site i. J is the near-
est neighbor (NN) interaction and K is the interaction
among the four spins in the same plaquette. We set fer-
romagnetic interactions, i.e., J > 0 and K > 0. For any
finite J and K, there is a phase transition from paramag-
netic phase at high temperature to ferromagnetic phase
at low temperature, which belongs to the 2D Ising uni-
versality class. For K = 0, this model reduces to the
standard Ising model which can be simulated e�ciently
by the Wol↵ method. However, for K 6= 0, no simple and
e�cient global update method is known. Below we will
show that SLMC method significantly reduces the auto-
correlation time near the critical point, using K/J = 0.2

TABLE I. The trained parameters {J̃n} of the e↵ective model
in Eq. 2, without and with setting J̃n = 0 (n � 2).

J̃1 J̃2 J̃3 Mean error
Train 1 1.2444 -0.0873 -0.0120 0.0009
Train 2 1.1064 - - 0.0011

as an example. More results can be found in the Supple-
mental Material (SM)16.
As outlined before, the initial step of the SLMC is to

train an e↵ective Hamiltonian, He↵, from a sample of
configurations generated by local update based on the
original Hamiltonian in Eq. 1. We choose He↵ to be a
generalized Ising Hamiltonian with two-body spin inter-
actions over various ranges,

He↵ = E0 � J̃1

X

hiji1

SiSj � J̃2

X

hiji2

SiSj � . . . , (2)

where hijin denotes the n-th NN interaction and J̃n is
the corresponding interaction parameter.
We now train He↵ from the training sample by opti-

mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
more e�ciently train He↵ through a simple and reliable
linear regression. For the a-th configuration in the sam-
ple, we compute its energy E

a [from Eq. 1] and all the
n-th NN spin-spin correlations Ca

n =
P

hijin SiSj , which

serve as the actual training data. Then, E0 and {J̃n}
can be easily trained from a multi-linear regression of
E

a and {Ca
n}, Ea =

P
n J̃nC

a
n + E0. The results are as

shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
He↵ could be self-improved by a reinforced learning pro-
cess. Usually, a good initial sample could be very hard to
generate using only local update, especially for systems
at the critical temperature Tc or with strong fluctuation.
In this case, we first train an e↵ective model He↵ using

2
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as an example. More results can be found in the Supple-
mental Material (SM)16.
As outlined before, the initial step of the SLMC is to

train an e↵ective Hamiltonian, He↵, from a sample of
configurations generated by local update based on the
original Hamiltonian in Eq. 1. We choose He↵ to be a
generalized Ising Hamiltonian with two-body spin inter-
actions over various ranges,

He↵ = E0 � J̃1

X

hiji1

SiSj � J̃2
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hiji2

SiSj � . . . , (2)

where hijin denotes the n-th NN interaction and J̃n is
the corresponding interaction parameter.
We now train He↵ from the training sample by opti-

mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
more e�ciently train He↵ through a simple and reliable
linear regression. For the a-th configuration in the sam-
ple, we compute its energy E

a [from Eq. 1] and all the
n-th NN spin-spin correlations Ca

n =
P

hijin SiSj , which

serve as the actual training data. Then, E0 and {J̃n}
can be easily trained from a multi-linear regression of
E

a and {Ca
n}, Ea =

P
n J̃nC

a
n + E0. The results are as

shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
He↵ could be self-improved by a reinforced learning pro-
cess. Usually, a good initial sample could be very hard to
generate using only local update, especially for systems
at the critical temperature Tc or with strong fluctuation.
In this case, we first train an e↵ective model He↵ using
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Guided by these requirements, we now propose the de-

tailed procedure of SLMC method. As shown in Fig. 1,
SLMC consists of four steps: (i) perform a trial MC sim-
ulation using local update to generate a large number of
configurations, which serve as training data; (ii) learn an
e↵ective Hamiltonian He↵ from this training data; (iii)
propose moves according to He↵ in the actual MC sim-
ulation; (iv) determine whether the proposed moves will
be accepted or rejected based on the detailed balance
principle of the original Hamiltonian H. Steps (i) and
(ii) constitute the learning process, whereas steps (iii)
and (iv) are repeated in the actual MC simulation to
calculate physical observables.

We further outline how to implement step (ii) and (iii)
in actual simulations for a model to be presented below.
We use machine learning15 in step (ii) to train an e↵ective
Hamiltonian, which can be e�ciently simulated using a
global update method even though the original Hamilto-
nian cannot. Then step (iii) can be easily implemented
using this global update.

Model and results: To demonstrate the power of
SLMC, we study a classical model on a 2D square lattice

H = �J

X

hiji

SiSj �K

X

ijkl2

SiSjSkSl, (1)

where Si = ±1 is the Ising spin on site i. J is the near-
est neighbor (NN) interaction and K is the interaction
among the four spins in the same plaquette. We set fer-
romagnetic interactions, i.e., J > 0 and K > 0. For any
finite J and K, there is a phase transition from paramag-
netic phase at high temperature to ferromagnetic phase
at low temperature, which belongs to the 2D Ising uni-
versality class. For K = 0, this model reduces to the
standard Ising model which can be simulated e�ciently
by the Wol↵ method. However, for K 6= 0, no simple and
e�cient global update method is known. Below we will
show that SLMC method significantly reduces the auto-
correlation time near the critical point, using K/J = 0.2
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shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
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process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
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FIG. 2. (color online) Fitting of the distribution drawn from
a sample of configurations in a Markov chain. The green dots
represent configurations in the sample, for which the x axis
shows the feature of the nearest-neighbor spin-spin correlation
C1, and the y axis shows the energy (per site) E/N computed
from the original model in Eq. 1.

a simulation at temperature T > Tc, and then generate
another sample at Tc, using the self-learning update with
He↵ learned from the first iteration. Later, a more accu-
rateHe↵ can be learned from the second-iteration sample.
In actual simulations, one can further improve this pro-
cess by using more iterations, each done with a smaller
sample. More details can be found in the Supplemental
Material.

Through this iterative training process, we success-
fully arrive at the final He↵. As shown in Fig. 2, He↵

(Self-Learning Fit) indeed fits the energy of the configu-
rations that are statistically significant in the simulation.
In the main part of the figure, the data points are con-
centrated in the vicinity of the fitted line, indicating that
trainedHe↵ is indeed a good description of the low-energy
physics.

Following the procedure of SLMC, once training pro-
cess is finished, cluster update with the Wol↵ algorithm
according to He↵ can be constructed. Then, the gener-
ated cluster update is accepted or rejected with a prob-
ability accounting for the energy di↵erence between the
e↵ective model and the original model. The probability
of accepting a cluster is as follows,

↵(A ! B) = min{1, e��[(EB�Eeff
B )�(EA�Eeff

A )]}, (3)

where A and B denote the configurations before and after
flipping the cluster. EA and E

e↵
A denote the energies of

a configuration A, for the original model in Eq. 1 and
the e↵ective model in Eq. 2, respectively. Derivation of
Eq. 3 can be found in the SM16. With Eq. 3, the detailed
balance is satisfied, and the SLMC is exact, despite the
use of an approximate e↵ective model in constructing the
cluster.

FIG. 3. (color online) The decay of autocorrelation functions
as a function of MC steps, obtained using di↵erent update
algorithms. Inset, semi-log plot of the same data.

To test the e�ciency of the update scheme in SLMC,
we measure the autocorrelation time ⌧ , which signifies
how correlated the MC configurations are in the Markov
chain (detailed relation of ⌧ with the computational com-
plexity of MC algorithm can be found in SM16). In
Fig. 3, we plot ⌧ of the ferromagnetic order parameter
M = 1

N |
P

i Si|, where N is the number of sites, mea-
sured at each step of Markov chain, generated by di↵er-
ent update algorithms on a square lattice of linear size
L = 40. The simulation is done at Tc, which is deter-
mined by the Binder ratio as shown in SM16.

We compare results of the local update, the self-
learning update using He↵ and also a naive Wol↵-like
cluster update with the bare two-body J term from the
original model in Eq. 1 is used to construct a cluster. The
autocorrelation functions generated by all updates decay
with the MC steps �t, and autocorrelation time ⌧ can
be obtained from fitting in the form of e��t/⌧ . Our re-
sults show that comparing to the local and naive cluster
updates, the self-learning update has the much shorter
⌧ . In particular, at this system size, the self-learning
update is about 24-times faster than the local update,
while the naive Wol↵-like cluster update does not gain
much speed-up.

While Fig. 3 is an example of the better performance
of SLMC for a fixed system size at Tc, we have further
collected the autocorrelation time ⌧ at Tc for local and
self-learning updates with many di↵erent system sizes,
and hence extract the scaling behavior of ⌧ with respect
to L. The results are shown in Fig. 4. The blue squares
are the ⌧L, i.e., autocorrelation time for local update,
and it follows ⌧L ⇠ L

2.2, well consistent with literature
on critical slowing down8,9. The green dots are the ⌧S ,
i.e., autocorrelation time for self-learning update. For all
the tested systems size L  80, the ⌧S delivers a large
speedup about 20 times (see inset of Fig. 4 for clarity).
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FIG. 4. (color online) The scaling behavior of autocorrelation
times of local update ⌧L, SLMC update ⌧S , and the restricted
SLMC update ⌧R. Inset is a zooming for L < 80.

For very large system size, we find ⌧S increases ex-
ponentially with L, ⌧S / e

L/L0 (more details in SM16).
This is because of a finite energy di↵erence between the
e↵ective model in Eq. 2 and the original model in Eq. 1.
Therefore, the acceptance ratio of flipping the whole clus-
ter in Eq. 3 decreases exponentially as the length of clus-
ter boundary grows with increasing L, which renders the
exponential increase of the autocorrelation time. But
this drawback in SLMC can be easily remedied by sim-
ply restricting the maximum size of the cluster in Wol↵
algorithm24. With this improvement, the averaged ac-
ceptance ratio can be expected to be fixed and SLMC
should have the same scaling function for autocorrela-
tion time as local update, ⌧R = ⌧0L

z. However, by tun-
ing the maximum size of cluster, we can achieve a much
smaller prefactor ⌧0, and the optimized maximum clus-
ter size can be automatically self-learned via a model-
independent procedure (more details in SM16). This is
indeed the case. As shown by the red dots in Fig. 4, when
the growth of the cluster is restricted to an area within
40 lattice spacing, the autocorrelation time ⌧R becomes
⌧R / L

2.1, which obeys the same power law as ⌧L, but

with a prefactor about 10 times smaller (More details
about the design of this restricted SLMC is provided in
SM16). Therefore, although SLMC still su↵ers from the
critical slowing down in the thermodynamic limit, we can
gain a 10-fold speedup. That means SLMC can achieve
much larger system size than local update, which helps to
overcome the finite size e↵ect. Moreover, for medium-size
systems, the SLMC without restriction can easily gain a
20-fold speedup, as shown by ⌧S .
Discussion: We now discuss the applicability of SLMC

method to a broader class of problems in statistical and
condensed matter systems. Besides spin systems, many
models of great interest may be transformed into spin
models with short-range interactions5,25, for which ef-
ficient global update methods are available. In such
cases, SLMC can be readily implemented similar to our
model studied above. In particular, we expect SLMC to
be very useful for studying strongly correlated fermion
systems26,27, where no e�cient global update method
is currently known. Moreover, by employing rapidly-
developing machine learning techniques, SLMC method
may be able to learn configuration update on its own,
without relying on a given e↵ective Hamiltonian. If real-
ized, this will further increase the e�ciency and versatil-
ity of SLMC.
SLMC may also bridge numerical and theoretical stud-

ies. The e↵ective Hamiltonian trained or learned from
the MC simulation may guide the theoretical study of
the original model. The benefit is mutual: theoretical
understanding may improve the accuracy of the e↵ective
model and thus the performance of numerical simulation.
Note added: Recently we noted a related work28.
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FIG. 1. (color online) Schematic illustration of learning pro-
cess (top panel) and simulating process (bottom panel) in
self-learning Monte Carlo.

namical exponent z in MC simulation.
Guided by these requirements, we now propose the de-

tailed procedure of SLMC method. As shown in Fig. 1,
SLMC consists of four steps: (i) perform a trial MC sim-
ulation using local update to generate a large number of
configurations, which serve as training data; (ii) learn an
e↵ective Hamiltonian He↵ from this training data; (iii)
propose moves according to He↵ in the actual MC sim-
ulation; (iv) determine whether the proposed moves will
be accepted or rejected based on the detailed balance
principle of the original Hamiltonian H. Steps (i) and
(ii) constitute the learning process, whereas steps (iii)
and (iv) are repeated in the actual MC simulation to
calculate physical observables.

We further outline how to implement step (ii) and (iii)
in actual simulations for a model to be presented below.
We use machine learning15 in step (ii) to train an e↵ective
Hamiltonian, which can be e�ciently simulated using a
global update method even though the original Hamilto-
nian cannot. Then step (iii) can be easily implemented
using this global update.

Model and results: To demonstrate the power of
SLMC, we study a classical model on a 2D square lattice

H = �J

X

hiji

SiSj �K

X

ijkl2

SiSjSkSl, (1)

where Si = ±1 is the Ising spin on site i. J is the near-
est neighbor (NN) interaction and K is the interaction
among the four spins in the same plaquette. We set fer-
romagnetic interactions, i.e., J > 0 and K > 0. For any
finite J and K, there is a phase transition from paramag-
netic phase at high temperature to ferromagnetic phase
at low temperature, which belongs to the 2D Ising uni-
versality class. For K = 0, this model reduces to the
standard Ising model which can be simulated e�ciently
by the Wol↵ method. However, for K 6= 0, no simple and
e�cient global update method is known. Below we will
show that SLMC method significantly reduces the auto-
correlation time near the critical point, using K/J = 0.2

TABLE I. The trained parameters {J̃n} of the e↵ective model
in Eq. 2, without and with setting J̃n = 0 (n � 2).

J̃1 J̃2 J̃3 Mean error
Train 1 1.2444 -0.0873 -0.0120 0.0009
Train 2 1.1064 - - 0.0011

as an example. More results can be found in the Supple-
mental Material (SM)16.
As outlined before, the initial step of the SLMC is to

train an e↵ective Hamiltonian, He↵, from a sample of
configurations generated by local update based on the
original Hamiltonian in Eq. 1. We choose He↵ to be a
generalized Ising Hamiltonian with two-body spin inter-
actions over various ranges,

He↵ = E0 � J̃1

X

hiji1

SiSj � J̃2

X

hiji2

SiSj � . . . , (2)

where hijin denotes the n-th NN interaction and J̃n is
the corresponding interaction parameter.
We now train He↵ from the training sample by opti-

mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
more e�ciently train He↵ through a simple and reliable
linear regression. For the a-th configuration in the sam-
ple, we compute its energy E

a [from Eq. 1] and all the
n-th NN spin-spin correlations Ca

n =
P

hijin SiSj , which

serve as the actual training data. Then, E0 and {J̃n}
can be easily trained from a multi-linear regression of
E

a and {Ca
n}, Ea =

P
n J̃nC

a
n + E0. The results are as

shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
He↵ could be self-improved by a reinforced learning pro-
cess. Usually, a good initial sample could be very hard to
generate using only local update, especially for systems
at the critical temperature Tc or with strong fluctuation.
In this case, we first train an e↵ective model He↵ using

2

FIG. 1. (color online) Schematic illustration of learning pro-
cess (top panel) and simulating process (bottom panel) in
self-learning Monte Carlo.
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ulation using local update to generate a large number of
configurations, which serve as training data; (ii) learn an
e↵ective Hamiltonian He↵ from this training data; (iii)
propose moves according to He↵ in the actual MC sim-
ulation; (iv) determine whether the proposed moves will
be accepted or rejected based on the detailed balance
principle of the original Hamiltonian H. Steps (i) and
(ii) constitute the learning process, whereas steps (iii)
and (iv) are repeated in the actual MC simulation to
calculate physical observables.

We further outline how to implement step (ii) and (iii)
in actual simulations for a model to be presented below.
We use machine learning15 in step (ii) to train an e↵ective
Hamiltonian, which can be e�ciently simulated using a
global update method even though the original Hamilto-
nian cannot. Then step (iii) can be easily implemented
using this global update.

Model and results: To demonstrate the power of
SLMC, we study a classical model on a 2D square lattice
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finite J and K, there is a phase transition from paramag-
netic phase at high temperature to ferromagnetic phase
at low temperature, which belongs to the 2D Ising uni-
versality class. For K = 0, this model reduces to the
standard Ising model which can be simulated e�ciently
by the Wol↵ method. However, for K 6= 0, no simple and
e�cient global update method is known. Below we will
show that SLMC method significantly reduces the auto-
correlation time near the critical point, using K/J = 0.2
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where hijin denotes the n-th NN interaction and J̃n is
the corresponding interaction parameter.
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mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
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shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
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cess. Usually, a good initial sample could be very hard to
generate using only local update, especially for systems
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e↵ective Hamiltonian He↵ from this training data; (iii)
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ulation; (iv) determine whether the proposed moves will
be accepted or rejected based on the detailed balance
principle of the original Hamiltonian H. Steps (i) and
(ii) constitute the learning process, whereas steps (iii)
and (iv) are repeated in the actual MC simulation to
calculate physical observables.

We further outline how to implement step (ii) and (iii)
in actual simulations for a model to be presented below.
We use machine learning15 in step (ii) to train an e↵ective
Hamiltonian, which can be e�ciently simulated using a
global update method even though the original Hamilto-
nian cannot. Then step (iii) can be easily implemented
using this global update.

Model and results: To demonstrate the power of
SLMC, we study a classical model on a 2D square lattice

H = �J

X

hiji

SiSj �K

X

ijkl2

SiSjSkSl, (1)

where Si = ±1 is the Ising spin on site i. J is the near-
est neighbor (NN) interaction and K is the interaction
among the four spins in the same plaquette. We set fer-
romagnetic interactions, i.e., J > 0 and K > 0. For any
finite J and K, there is a phase transition from paramag-
netic phase at high temperature to ferromagnetic phase
at low temperature, which belongs to the 2D Ising uni-
versality class. For K = 0, this model reduces to the
standard Ising model which can be simulated e�ciently
by the Wol↵ method. However, for K 6= 0, no simple and
e�cient global update method is known. Below we will
show that SLMC method significantly reduces the auto-
correlation time near the critical point, using K/J = 0.2

TABLE I. The trained parameters {J̃n} of the e↵ective model
in Eq. 2, without and with setting J̃n = 0 (n � 2).

J̃1 J̃2 J̃3 Mean error
Train 1 1.2444 -0.0873 -0.0120 0.0009
Train 2 1.1064 - - 0.0011

as an example. More results can be found in the Supple-
mental Material (SM)16.
As outlined before, the initial step of the SLMC is to

train an e↵ective Hamiltonian, He↵, from a sample of
configurations generated by local update based on the
original Hamiltonian in Eq. 1. We choose He↵ to be a
generalized Ising Hamiltonian with two-body spin inter-
actions over various ranges,

He↵ = E0 � J̃1

X

hiji1

SiSj � J̃2

X

hiji2

SiSj � . . . , (2)

where hijin denotes the n-th NN interaction and J̃n is
the corresponding interaction parameter.
We now train He↵ from the training sample by opti-

mizing E0 and {J̃n}. In principle, this can be viewed as
an unsupervised learning process15,17, where a new sta-
tistical model He↵ is trained using a subset of features
extracted from the configurations. However, by taking
advantage of knowing H for each configuration, we can
more e�ciently train He↵ through a simple and reliable
linear regression. For the a-th configuration in the sam-
ple, we compute its energy E

a [from Eq. 1] and all the
n-th NN spin-spin correlations Ca

n =
P

hijin SiSj , which

serve as the actual training data. Then, E0 and {J̃n}
can be easily trained from a multi-linear regression of
E

a and {Ca
n}, Ea =

P
n J̃nC

a
n + E0. The results are as

shown in Table I (Train 1). It is clear that J̃1 is dominant
and much larger than others, which implies we could set
J̃n = 0 (n � 2). And then, by a linear regression, we
can successfully extract the most optimized J̃1 (Train 2
in Table I). It is found that the mean error is almost the
same to the case without setting J̃n = 0 (n � 2), which
is expected since all J̃n (n � 2) obtained from the multi-
linear regression are negligible. Through this training
process, we conclude that only the nearest interaction is
relevant there, thus we only keep this term in the follow-
ing simulations. We emphasize that this trained model
He↵ only approximates the original one for the configura-
tions that are statistically significant in the sample, i.e.,
the ones near the free energy minimum. Thus He↵ can be
regarded as an e↵ective model. We notice that, recently,
there are many other attempts to apply machine learning
to MC simulations18–23.

In addition, it should be addressed that the training of
He↵ could be self-improved by a reinforced learning pro-
cess. Usually, a good initial sample could be very hard to
generate using only local update, especially for systems
at the critical temperature Tc or with strong fluctuation.
In this case, we first train an e↵ective model He↵ using

Testcase

This is an exact algorithm.

P(Sk′�|Sk) = min (1,
e−β(H[Sk′�]−Hθ

eff[Sk′�])

e−β(H[Sk]−Hθ
eff[Sk]) ) Qθ

eff(Sk′ �|Sk)

SLMC for spin systems

Update using 
effective model 
this must satisfy detailed balance

θ : tunable parameter = coupling

https://arxiv.org/abs/1610.03137
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Exact algorithm is needed
QCD with Self-learning Monte Carlo

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

work in progress

P(Uk′�|Uk) = min (1,
e−(S[Uk′�]−Sθ

eff[Uk′�])

e−(S[Uk]−Sθ
eff[Uk]) ) Qθ

eff(Uk′ �|Uk)

Collaborate with

Akinori Tanaka (Riken AIP/ iTHENS)

Yuki Nagai (JAEA/ RIKEN AIP)

Seff[U] = +β̃recβ̃pl

S[U] = βpl +ψ̄(Dstag + m)ψ

Parameters determined by HMC with linear regression 
 or we can use SLMC (“self-learning” way of use)

+β̃* +⋯

Effective action = hopping parameter expanded action = pure-gluonic, heatbath

SLMC for lattice QCD
θ : tunable parameter = coupling

Setup: SU(2) plaquette action + staggered quarks with ma = 0.5

Our choice: 
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Preliminary result
QCD with Self-learning Monte Carlo

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

Collaborate with

Akinori Tanaka (Riken AIP/ iTHENS)

Yuki Nagai (JAEA/ RIKEN AIP)

work in progress

Observables（■=SLMC, ■=HMC, ■=quenched）

So far so good

Setup: SU(2) plaquette action + staggered quarks with ma = 0.5
Effective action = hopping parameter expanded action = pure-gluonic, heatbath

>

P(Uk′�|Uk) = min (1,
e−(S[Uk′�]−Sθ

eff[Uk′�])

e−(S[Uk]−Sθ
eff[Uk]) ) Qθ

eff(Uk′ �|Uk)

ma=0.5, L=4

SLMC for lattice QCD
θ : tunable parameter = coupling



3. QCD spectral function 
via sparse modeling

25

Work in progress, very preliminary

A. Tomiya



26

QCD spectral function?
It contains everything, but we cannot obtain

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

G(τ) = ⟨O(τ)O†(0)⟩ .

G(τ) = ∫ dωK(τ, ω)ρ(ω) ~ cosh: kernelK̄(τ, ω)

Two point functions G(τ) can be calculate on the lattice,

Corresponding QCD spectral function ρ(ω) contains 

every information of QCD for that channel,

Gτ = ∑
ω

Kτ,ωρω

=G K ρ⋅
O(10) O(103)

Discretize

Lack of information to determine ρ from G (“ill-posed problem”)

Practically, we can not obtain ρ because,

Maxima entropy method (MEM; Asakawa et al.) has been used = Bayesian analysis

known unknown
known
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Sparse Modeling?
Fitting with L1 regulator (=LASSO, least absolute shrinkage and selection operator)

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

L(ρ̃; λ) = | G̃ − Sρ̃ |2
2

Apply the singular value decomposition (also used in MEM), 

K = USV⊤

G̃ = U⊤G
ρ̃ = V⊤ρ{ Intermediate rep. 

(IR basis)

G̃τ = Sτ,ωρ̃ω

U, V
S

Orthogonal (unitary) mat.

Rectangular diagonal 
matrix

χ2(ρ̃) = | G̃ − Sρ̃ |2
2

Naive chi square

Chi square with L1 
regulator (LASSO) 

using Lagrange mult.

Modify

And minimize this L.

=G̃ ρ̃⋅
s1 0 0 0 0 0
0 s2 0 0 0 0
0 0 s3 0 0 0

Overfit the noisy data

+λ | ρ̃ |1
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Why L1 regulator works?
L1 regulator can kill ambiguities well = sparseness

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

Example:
(a1 a2) (x1

x2) = constant

min
xi

| ⃗x |2 min
xi

| ⃗x |1

w/ L2 constraint w/ L1 constraint

| ⃗x |2 = x2
1 + x2

2
| ⃗x |1 = |x1 | + |x2 |

x1

x2

x1

x2

x2 = 0 (sparse)x1≠0, x2≠0 

Definition

Solution:

“Constraint”

Even if the equation has statical noise, 
a solution with L1 constraint is robust (insensitive to noise)

constraint

Given Eq.

solution
solution
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Sparseness and LASSO
Minimize chi-square + L1 constraint in SVD basis

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

Original Problem: 
We want to determine O(1000) points of ρ from O(10) data

This means, O(10) points of ρ in some basis can be determined

because we don’t have information.

BUT, in SVD basis, the spectral function is sparse!

L(ρ̃; λ) = | G̃ − Sρ̃ |2
2 + λ | ρ̃ |1

ρ = Vρ̃

So, ρ can be obtained by minimizing,

and,

(In practice, we add positivity constraint for ρ to L.)

Ohtsuki et al. 2017

for cond. mat.

O(10) O(103)
known unknown

known

=G̃ ρ̃⋅
s1 0 0 0 0 0
0 s2 0 0 0 0
0 0 s3 0 0 0

Known Unknown
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(very) Preliminary results
Mock data + noise: it is well reconstructed …?

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

Mock data (vector ch.) from PRD65, 014501(CP-PACS), noise level from Asakawa et al.

ρ(mock data) G G+noise ρ(reconstruct) integration +Gaussian noise Sparse modeling

|ρrec(ω) − ρmock(ω) |2 = 0.1071

P!F!DHm"#$
eQ"( f )

ZLZS%"&
, Q"%f&!"S%f&"L . %13&

Therefore the condition satisfied by the most probable spec-
tral function f " for a given " !and model m(')#is given by

(Q"%f&
( f "

f! f"

!0. %14&

The parameter " dictates the relative weight of the en-
tropy S( f ) and L. One can deal with " dependence of f " as
follows. One first defines P!"!DHm# !3,13,14#, the prob-
ability of " for given data and all prior knowledge, which
can be transformed as

P!"!DHm#$P!"!Hm## DF
eQ"( f )

ZLZS%"&
. %15&

See Appendix E for details. In the final result f̂ ('), " is
averaged with this weight factor P!"!DHm#,

f̂%'&!# d"P!"!DHm#f "%'&$ # d" P!"!DHm#.
%16&

This procedure is called Bryan’s method !17#and is used
in this article. We restrict the range of " in the actual average
as "min)")"max , where "min and "max are chosen to sat-
isfy P!"̂!DHm#*10 P!"min ,max!DHm# with "̂ being the
maximum value of P!"!DHm#. The standard choice of
P!"!Hm#in Eq. %15&is either a constant or 1/" !3,14,17#. In
the next section we will show that the final result is insensi-
tive to the choice as long as P!"!DHm# is sharply peaked
around "̂ , and therefore we adopt P!"!Hm#!const in our
main analysis.
In the MEM it is not possible to assign error bars to each

point in the spectral function since the errors between differ-
ent points are strongly correlated. Instead we estimate the
uncertainty of the spectral function averaged over ' in a
certain region by the method explained in Appendix F. The
magnitude of this uncertainty gives an estimate for the good-
ness of the given model m(') !3,6#.

B. Test

Several tests of the MEM have already been carried out in
Ref. !6#, where the dependence of the results on the number
of time slices ND , the size of errors of the data, and the
model m(') have been examined using mock-up data cre-
ated from test spectral functions. The following conclusions
were drawn from the tests.

%1&Decreasing the error of data D(+) is more important
than increasing ND for obtaining better estimates of f (')
that reproduce the original spectral function more closely.

%2&It is better to include information about f ('), such as
the asymptotic value, if it is known, into the model m(').

%3&If the obtained f (') depends strongly on the model, a
better model in the sense of leading to an f (') that is closer

to the original spectral function gives smaller errors for the
averaged f (').

%4&The error of the averaged f (') in a certain region can
be used to measure the significance of f (') in the region.
For example, if the error of the averaged f (') around a peak
is much smaller than the averaged value, the peak is likely to
be true, and vice versa.
Before applying the MEM to actual data, we perform fur-

ther tests on %a& the dependence on ND and the temporal
separation of data ,+ , and %b&the dependence on the choice
of P!"!Hm#. For these tests we use a realistic spectral func-
tion in the vector channel of the e#e" annihilation !6,18#,
which is given by f in(')!- in(')'2, where the factor '2 is
expected from the dimension of meson spectral function,
with
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Here F- is the residue of - meson resonance defined by
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with the polarization vector 42 , and /-(') includes the 5
function which represents the threshold of -→.. decay as
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We make dimensionful quantities dimensionless using the
lattice spacing a, '→'a , +→+/a where a is set to
1 GeV"1. The values of parameters are

m-!0.77, m.!0.14, F-!0.142,

'0!1.3, (!0.2, "s!0.3, %20&

where "s is independent of ' for simplicity. The shape of
- in(') for this choice of parameters is shown in Fig. 1. The

FIG. 1. The input spectral function - in('). The value in the
figure is the area under the curve for 0)')6.

SPECTRAL FUNCTION AND EXCITED STATES IN . . . PHYSICAL REVIEW D 65 014501

014501-3

P!F!DHm"#$
eQ"( f )

ZLZS%"&
, Q"%f&!"S%f&"L . %13&

Therefore the condition satisfied by the most probable spec-
tral function f " for a given " !and model m(')#is given by

(Q"%f&
( f "

f! f"

!0. %14&

The parameter " dictates the relative weight of the en-
tropy S( f ) and L. One can deal with " dependence of f " as
follows. One first defines P!"!DHm# !3,13,14#, the prob-
ability of " for given data and all prior knowledge, which
can be transformed as

P!"!DHm#$P!"!Hm## DF
eQ"( f )

ZLZS%"&
. %15&

See Appendix E for details. In the final result f̂ ('), " is
averaged with this weight factor P!"!DHm#,

f̂%'&!# d"P!"!DHm#f "%'&$ # d" P!"!DHm#.
%16&

This procedure is called Bryan’s method !17#and is used
in this article. We restrict the range of " in the actual average
as "min)")"max , where "min and "max are chosen to sat-
isfy P!"̂!DHm#*10 P!"min ,max!DHm# with "̂ being the
maximum value of P!"!DHm#. The standard choice of
P!"!Hm#in Eq. %15&is either a constant or 1/" !3,14,17#. In
the next section we will show that the final result is insensi-
tive to the choice as long as P!"!DHm# is sharply peaked
around "̂ , and therefore we adopt P!"!Hm#!const in our
main analysis.
In the MEM it is not possible to assign error bars to each

point in the spectral function since the errors between differ-
ent points are strongly correlated. Instead we estimate the
uncertainty of the spectral function averaged over ' in a
certain region by the method explained in Appendix F. The
magnitude of this uncertainty gives an estimate for the good-
ness of the given model m(') !3,6#.

B. Test

Several tests of the MEM have already been carried out in
Ref. !6#, where the dependence of the results on the number
of time slices ND , the size of errors of the data, and the
model m(') have been examined using mock-up data cre-
ated from test spectral functions. The following conclusions
were drawn from the tests.

%1&Decreasing the error of data D(+) is more important
than increasing ND for obtaining better estimates of f (')
that reproduce the original spectral function more closely.

%2&It is better to include information about f ('), such as
the asymptotic value, if it is known, into the model m(').

%3&If the obtained f (') depends strongly on the model, a
better model in the sense of leading to an f (') that is closer

to the original spectral function gives smaller errors for the
averaged f (').

%4&The error of the averaged f (') in a certain region can
be used to measure the significance of f (') in the region.
For example, if the error of the averaged f (') around a peak
is much smaller than the averaged value, the peak is likely to
be true, and vice versa.
Before applying the MEM to actual data, we perform fur-

ther tests on %a& the dependence on ND and the temporal
separation of data ,+ , and %b&the dependence on the choice
of P!"!Hm#. For these tests we use a realistic spectral func-
tion in the vector channel of the e#e" annihilation !6,18#,
which is given by f in(')!- in(')'2, where the factor '2 is
expected from the dimension of meson spectral function,
with

- in%'&!
2
. %F-

2 /-%'&m-

%'2"m-
2&2#/-

2%'&m-
2

#
1
8. &1#

"s

. ' 1

1#e ('0"')/((. %17&

Here F- is the residue of - meson resonance defined by

00!d̄12u!-3!!2F-m-42!!2 f -m-
242 , %18&

with the polarization vector 42 , and /-(') includes the 5
function which represents the threshold of -→.. decay as

/-%'&!
1
48.

m-
3

F-
2 &1"

4m.
2

'2 '3/25%'"2m.&. %19&

We make dimensionful quantities dimensionless using the
lattice spacing a, '→'a , +→+/a where a is set to
1 GeV"1. The values of parameters are

m-!0.77, m.!0.14, F-!0.142,

'0!1.3, (!0.2, "s!0.3, %20&

where "s is independent of ' for simplicity. The shape of
- in(') for this choice of parameters is shown in Fig. 1. The

FIG. 1. The input spectral function - in('). The value in the
figure is the area under the curve for 0)')6.

SPECTRAL FUNCTION AND EXCITED STATES IN . . . PHYSICAL REVIEW D 65 014501

014501-3

P!F!DHm"#$
eQ"( f )

ZLZS%"&
, Q"%f&!"S%f&"L . %13&

Therefore the condition satisfied by the most probable spec-
tral function f " for a given " !and model m(')#is given by

(Q"%f&
( f "

f! f"

!0. %14&

The parameter " dictates the relative weight of the en-
tropy S( f ) and L. One can deal with " dependence of f " as
follows. One first defines P!"!DHm# !3,13,14#, the prob-
ability of " for given data and all prior knowledge, which
can be transformed as

P!"!DHm#$P!"!Hm## DF
eQ"( f )

ZLZS%"&
. %15&

See Appendix E for details. In the final result f̂ ('), " is
averaged with this weight factor P!"!DHm#,

f̂%'&!# d"P!"!DHm#f "%'&$ # d" P!"!DHm#.
%16&

This procedure is called Bryan’s method !17#and is used
in this article. We restrict the range of " in the actual average
as "min)")"max , where "min and "max are chosen to sat-
isfy P!"̂!DHm#*10 P!"min ,max!DHm# with "̂ being the
maximum value of P!"!DHm#. The standard choice of
P!"!Hm#in Eq. %15&is either a constant or 1/" !3,14,17#. In
the next section we will show that the final result is insensi-
tive to the choice as long as P!"!DHm# is sharply peaked
around "̂ , and therefore we adopt P!"!Hm#!const in our
main analysis.
In the MEM it is not possible to assign error bars to each

point in the spectral function since the errors between differ-
ent points are strongly correlated. Instead we estimate the
uncertainty of the spectral function averaged over ' in a
certain region by the method explained in Appendix F. The
magnitude of this uncertainty gives an estimate for the good-
ness of the given model m(') !3,6#.

B. Test

Several tests of the MEM have already been carried out in
Ref. !6#, where the dependence of the results on the number
of time slices ND , the size of errors of the data, and the
model m(') have been examined using mock-up data cre-
ated from test spectral functions. The following conclusions
were drawn from the tests.

%1&Decreasing the error of data D(+) is more important
than increasing ND for obtaining better estimates of f (')
that reproduce the original spectral function more closely.

%2&It is better to include information about f ('), such as
the asymptotic value, if it is known, into the model m(').

%3&If the obtained f (') depends strongly on the model, a
better model in the sense of leading to an f (') that is closer

to the original spectral function gives smaller errors for the
averaged f (').

%4&The error of the averaged f (') in a certain region can
be used to measure the significance of f (') in the region.
For example, if the error of the averaged f (') around a peak
is much smaller than the averaged value, the peak is likely to
be true, and vice versa.
Before applying the MEM to actual data, we perform fur-

ther tests on %a& the dependence on ND and the temporal
separation of data ,+ , and %b&the dependence on the choice
of P!"!Hm#. For these tests we use a realistic spectral func-
tion in the vector channel of the e#e" annihilation !6,18#,
which is given by f in(')!- in(')'2, where the factor '2 is
expected from the dimension of meson spectral function,
with

- in%'&!
2
. %F-

2 /-%'&m-

%'2"m-
2&2#/-

2%'&m-
2

#
1
8. &1#

"s

. ' 1

1#e ('0"')/((. %17&

Here F- is the residue of - meson resonance defined by

00!d̄12u!-3!!2F-m-42!!2 f -m-
242 , %18&

with the polarization vector 42 , and /-(') includes the 5
function which represents the threshold of -→.. decay as

/-%'&!
1
48.

m-
3

F-
2 &1"

4m.
2

'2 '3/25%'"2m.&. %19&

We make dimensionful quantities dimensionless using the
lattice spacing a, '→'a , +→+/a where a is set to
1 GeV"1. The values of parameters are

m-!0.77, m.!0.14, F-!0.142,

'0!1.3, (!0.2, "s!0.3, %20&

where "s is independent of ' for simplicity. The shape of
- in(') for this choice of parameters is shown in Fig. 1. The

FIG. 1. The input spectral function - in('). The value in the
figure is the area under the curve for 0)')6.

SPECTRAL FUNCTION AND EXCITED STATES IN . . . PHYSICAL REVIEW D 65 014501

014501-3

w/ kernel in SVD basis

so far so good

“Mimic MC”
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Summary
Machine learning provides us new techniques

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

1. Neural network can detect phase transition in classical spin chain


2. SLMC can generate meaningful gauge configurations


3. Sparse modeling can reconstruct QCD spectral function (for mock data though)


5. Application of SLMC to physical system; right top corner of the Columbia plot


6. Improve SLMC by adding more and more terms, neural net may help + extend to SU(3)


7. More test on sparse modeling and apply to real lattice qcd data

Todo:

Comment: - Our community should discuss systematic error from  
ML techniques, if it is not exact (Benefit of LQCD is quantitativity).


- How can we control or evaluate error? Thanks!





Backup



Figure 3. The fully-connected weights w(2)
Ka

of trained neural networks with three hidden units

(Nh = 3). The horizontal axes represent temperatures K of input 2D Ising configurations. The

structure change is still observed around critical temperature. One of the weights has an almost

opposite temperature dependence, which also appeared in Fig. 9. See the main text for detailed

discussion.

(a) Output of first layer
(b) Parametrization in Eq. (9)

Figure 4. (a) Correlations between the output of the first layer and magnetization of input config-

uration. The horizontal axis represents the magnetization per site of input Ising spin configuration

and the vertical axis is x̃a = w(1)
ai

�i + b(1)a . (b) The model parametrization, where each line corre-

sponds to each row of Eq. (9).

the critical temperature as shown in Fig. 3.

Before modeling the second layer, we examine the characteristics of the first layer. Fig-

ure 4 shows the correlation between the output of the first layer x̃a := w
(1)
ai
�i+ b

(1)
a of Eq. (3)

and magnetization density of the input Ising spin configuration. From this observation, we

8

(            )
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Results 2/2
Output of first layer ~ Magnetization

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

W0 W1
yK

3units 20units16x16

Flatten 
&Feed

{σi}
K. Kashiwa, Y. Kikuchi AT 1812.01522

W1

Scatter plot for output of 1st layer and magnetization

->  x is correlated to the magnetization


(automatically captured)

Output 1st  layer= 

x0

x1

x2

x0

x1

x2

x0 x1 x2

This means, W1 represents correlation between 
temperature and magnetization!
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uration. The horizontal axis represents the magnetization per site of input Ising spin configuration

and the vertical axis is x̃a = w(1)
ai

�i + b(1)a . (b) The model parametrization, where each line corre-

sponds to each row of Eq. (9).

the critical temperature as shown in Fig. 3.

Before modeling the second layer, we examine the characteristics of the first layer. Fig-

ure 4 shows the correlation between the output of the first layer x̃a := w
(1)
ai
�i+ b

(1)
a of Eq. (3)

and magnetization density of the input Ising spin configuration. From this observation, we

8
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Markov chain Monte-Carlo
It has inefficiency from correlation between samples
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Akio Tomiya

Application of ML to physics 

Nindep =
N

2τac

⟨O[ϕ]⟩ =
1
N

N

∑
k

O[ϕk] ± O(
1

Nindep

)

サンプルA サンプルB サンプルC→ → → …

ϕ1 ϕ2 ϕ3

Γ̄(t) =
1

N − t ∑
k

(O[ϕk+t] − Ō)(O[ϕk] − Ō)

Γ or τac measures similarity of configurations

∼ e−t/τac
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Effect of long autocorrelation
Autocorrelation makes signals/noise ratio bad
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Application of ML to physics 

Nindep =
Nconf

2τac

36

⟨O[ϕ]⟩ =
1

Nconf

Nconf

∑
k

O[ϕk] ± O(
1

)

β Nconf τac Nindep

5.166 15k 47 160
5.167 20k 224 45
5.168 20k 656 15
5.169 20k 2940 3
5.170 15k 1306 6
5.171 14k 58 116
5.172 10k 48 106

L3 × Nt = 163 × 4
ma = 0.03

Data from

Nf=3, standard staggered

with magnetic field

τac ∼ ξz ∼ Lz z : Dynamic critical exponent
τac: Algorithm dependent

(see 1703.03136)

If we find an algorithm with smaller z (or shorter τac), 
it enables us precise/large scale research around the critical regime!

k=1000

Nindep

Critical temp.

(N. Madras et. al 1988)
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Markov chain Monte-Carlo?
If detailed balance satisfied, we can sample using it
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Application of ML to physics 

A key concept is the detailed balance condition:

If an update algorithm P(.|.) satisfies

it will give configurations with a desired distribution (skip proof)

Peq(ϕ) =
1

∫ 𝒟ϕ′�e−S[ϕ′ �]
e−S[ϕ]

P(ϕk′�|ϕk)e−S[ϕk] = P(ϕk |ϕk′�)e−S[ϕk′ �]



38

We have to fight for autocorrelation!
Machine Learning techniques could reduce autocorrelation
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Application of ML to physics 

• Correlation between generated configurations are estimated by 
autocorrelation time 　


• Autocorrelation time      depends on an update algorithm


• If      becomes half, statistics becomes effectively double in same cost in time!

⟨O[ϕ]⟩ =
1
N

N

∑
k

O[ϕk] ± O(
1

Nindep

)

τac is given by an update algorithm (N. Madras et. al 1988)

τac

τac

τac

Γ̄(t) =
1

N − t ∑
k

(O[ϕk+t] − Ō)(O[ϕk] − Ō) ∼ e−t/τac

Nindep =
N

2τac

I attempt to generate configurations using machine learning!
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Exact algorithm is needed
QCD with Self-learning Monte Carlo

A.I. FOR NUCLEAR PHYSICS 
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Application of ML to physics 

Collaborate with

Akinori Tanaka (Riken AIP/ iThems)

Yuki Nagai (JAEA/ RIKEN AIP)

work in progress

P(Uk′�|Uk) = min (1,
e−(S[Uk′�]−Seff[Uk′�])

e−(S[Uk]−Seff[Uk]) ) Qeff(Uk′�|Uk)

Autocorrelation（■=HMC, ■=SLMC）

Also good

Effective action = hopping parameter expanded action, heatbath
Setup: SU(2) plaquette action + staggered quarks
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Exact algorithm is needed
QCD with Self-learning Monte Carlo

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

Collaborate with

Akinori Tanaka (Riken AIP/ iThems)

Yuki Nagai (JAEA/ RIKEN AIP)

work in progress

P(Uk′�|Uk) = min (1,
e−(S[Uk′�]−Seff[Uk′�])

e−(S[Uk]−Seff[Uk]) ) Qeff(Uk′�|Uk)

Acceptance

HMC : 90% 
SLMC : 60%

(D[U ] +m)�1

26
1

# of operation of

Bad news: now it works only for m > 1 
Stay tuned

Effective action = hopping parameter expanded action, heatbath
Setup: SU(2) plaquette action + staggered quarks
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QCD spectral function?
QCD with Self-learning Monte Carlo
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Application of ML to physics 

G(τ) = ∫ dωK̄(τ, ω)ρ(ω) K̄(τ, ω) = ω2(e−τω + e−(Nτ−τ)ω)

Gτ = ∑
ω

K̄τ,ωρω

=Gτ K̄τ,ω ρω⋅
O(10) O(103)
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Introduction
What does “Machine learning” give us?

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

What supervised learning does (~ deep learning, neural nets):
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Introduction
What does “Machine learning” give us?

A.I. FOR NUCLEAR PHYSICS 

Akio Tomiya

Application of ML to physics 

“White box” = “model”

fθ(x)

θ = {parameters}

-Parametrized function (neural nets), a fit function

5

0

4

What supervised learning does (~ deep learning, neural nets):
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Introduction
What does “Machine learning” give us?
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Application of ML to physics 

• Machine learning (∋ deep learning) basically, make a “map” between data and output


• It could be deterministic (neural nets) or stochastic (generative models, later)

“White box” = “model”

fθ(x)

θ = {parameters}

-Parametrized function (neural nets), a fit function

5

0

4

DKL(θ) ≥ 0 : “Distance between correct answer to current output”

 (cf: chi square in fitting, θ = a set of parameters)

What supervised learning does (~ deep learning, neural nets):
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Unsupervised learning in a nutshell
Information comes from a probability distribution
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Application of ML to physics 

∂θDθ(P ||Pθ) = − ∫ 𝒟xP(x)∂θ log(Pθ(x))

Pθ[x] =
1
Zθ

e−Hθ[x]

= − ∫ 𝒟xP(x)∂θ(−Hθ[x] − log Zθ)

= ∫ 𝒟xP(x)(∂θHθ[x] +
1
Zθ

(∫ 𝒟y∂θe−Hθ[y]))

= ∫ 𝒟xP(x)∂θHθ[x] −
1
Zθ ∫ 𝒟yHθ[y]e−Hθ[y]
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Unsupervised learning in a nutshell
Inverse of Ising model ~ Boltzmann machine
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Application of ML to physics 

Hθ[σ] = β∑ Kijσiσj

Eg. Generalized Ising model 
(spin glass)

⟨O[σ]⟩θ =
1
Zθ ∑

{σ}

e−Hθ[σ]

σi: spin
Kij: coupling

θ = {Kij, β| parameters}

What physicists 
want to do

 Boltzmann machine: 
guess a set of parameters θ
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Unsupervised learning in a nutshell
Unsupervised
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Application of ML to physics 

Eg. Generalized Ising model 
(spin glass)

σi: spin
Kij: parameters

Generative models 
fit (guess) the coupling

P(x)

sampling(some easier way)

• Once determine a coupling K (= training), we can use it.


• Sampling from parametrized distribution is needed

Pθ[σ] =
1
Zθ

e−Hθ[σ]


