4 May 2020 @ Jefferson Lab.

Applications of machine learning to computational physics

Akio Tomiya (RIKEN-BNL)

Based on arXiv: 1609.09087, 1812.01522, 1712.03893 and works in progress and preliminary

Self-Introduction

Who and what am I?

- 1. I have been working on lattice gauge theory
 - 1. Walking technicolor. arXiv:1411.1155
 - 2. U(1) axial anomaly at finite temperature with OV/DW. arXiv:1612.01908, ...
 - 3. Finite temperature QCD with magnetic field. arXiv: 1904.01276 ...
 - 4. lattice QED in 2D via quantum computing. arXiv: 2001.00485
- 2. Machine learning (today's topic, some of them are on-going)
 - 1. Detection of phase transition. arXiv:1609.09087, 1812.01522
 - 2. Gauge configuration generation. arXiv: 1712.03893 + α
 - 3. QCD Spectral function

1. Machine learning? 2. Detection of phase transition 3. Configuration generation (work in progress) 4. QCD spectral function (work in progress) 5. Summary

Machine learning?

What is machine learning? A way of theoretical high-energy physics

A.I. FOR NUCLEAR PHYSICS

Application of ML to physics

A.I. FOR NUCLEAR PHYSICS

Application of ML to physics

Example: neural network?

Fit ansatz with multi-nested linear/non-linear func. with parameters

Neural network is a parametrized non-linear map between two vector space

A.I. FOR NUCLEAR PHYSICS

What is the neural network?

Fit ansatz with multi-nested linear/non-linear func. with parameters

What is the neural network?

Fit ansatz with multi-nested linear/non-linear func. with parameters

1.Detection of phase transition

arXiv: 1609.09087(w/ A. Tanaka), 1812.01522(w/ K. Kashiwa, Y. Kikuchi)

Can "Al" detect phase transition?

We train Neural net as a thermometer (Classification problem)

A.Tanaka AT 1609.09087 K. Kashiwa, Y. Kikuchi AT 1812.01522

Akio Tomiya

Q. Can AI detect phase transition?

With fewer information...

Juan Carrasquilla & Roger G. Melko (2017)

configurations, temperature

A. YES!

Can "Al" detect phase transition? Neural net as a thermometer (Classification problem)

A.Tanaka AT 1609.09087 K. Kashiwa, Y. Kikuchi AT 1812.01522

Akio Tomiya

Input = Ising configurations (by MCMC) with inverse temperature $\beta \in (\beta_{min} < \beta_{cr} < \beta_{max})$

Output = A class of temperature (Discretized inverse temperature)

NN is trained as a "thermometer"

Can "Al" detect phase transition? Akio Tomiya Neural net as a thermometer (Classification problem)

A.Tanaka AT 1609.09087 K. Kashiwa, Y. Kikuchi AT 1812.01522

Input = Ising configurations (by MCMC) with inverse temperature $\beta \in (\beta_{min} < \beta_{cr} < \beta_{max})$ Output = A class of temperature (Discretized inverse temperature)

NN is trained as a "thermometer"

Minimize E, NN becomes a thermometer but we focus on W₁

Neural net captures phase transition Akio Tomiya Heat map of weight W in second layer has structure

After training, W₁ gets some pattern, especially there is a border around critical temp.

From detail analysis, output of W0 is correlated to magnetization

A.I. FOR NUCLEAR PHYSICS

A.Tanaka AT 1609.09087 K. Kashiwa, Y. Kikuchi AT 1812.01522

- After training neural networks as a thermometer, it captures phase boundary
- Output of first layer is correlated to magnetization, so second layer gets a pattern.
- This framework actually works also for 3-states Potts model (skipped)
- If make it deeper with convolution layers to improve the temperature prediction, but the pattern of weights becomes blurred
- Applicability for gauge system? How can we input data?

Cf P Shanahan, D Trewartha, W Detmold 1801.05784 S Wetzel, M Scherzer 1705.05582

2. Configuration generation for gauge theory

arXiv: 1712.03893 (w/ A. Tanaka) and **work in progress** (w/ A.Tanaka, Y. Nagai)

Markov chain Monte-Carlo It enables us to calculate observables

• Quantum fired theories, lattice QCD, are written by very high dimensional integral

$$\langle O[\phi] \rangle = \frac{1}{Z} \int \mathscr{D}\phi e^{-S[\phi]} O[\phi]$$

Markov chain Monte-Carlo It enables us to calculate observables

• Quantum fired theories, lattice QCD, are written by very high dimensional integral

We can calculate expectation values by using Markov chain Monte-Carlo!

Markov chain Monte-Carlo It enables us to calculate observables

• Quantum fired theories, lattice QCD, are written by very high dimensional integral

- It is difficult to estimate expectation values using simple numerical integral like the trapezoid method.
- <u>Markov chain</u> Monte-Carlo can do it, independent to the dimensionality!
- IF a system has fermions, cost becomes expensive...
- We make this cheaper via "self-learning algorithm" in lattice gauge theory.

Exact algorithm is needed Self-learning Monte Carlo (SLMC) is exact

SLMC for spin systems

$$P(S_{k'}|S_k) = \min\left(1, \frac{e^{-\beta(H[S_{k'}] - H_{eff}^{\theta}[S_{k'}]}}{e^{-\beta(H[S_k] - H_{eff}^{\theta}[S_k]}}\right)$$

$$(H[S_{k'}] - H^{\theta}_{eff}[S_{k'}])$$

J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137) **Proposing part**

: tunable parameter = coupling

Akio Tomiya

$$Q_{eff}^{\theta}(S_{k'} | S_k)$$

Corrected by modified Metropolis test

Accent/Reject

Update using effective model this must satisfy detailed balance

This is an exact algorithm: It gives correct configurations and if the effective model is far from the target system, acceptance is zero.

Intuitively, Self-learning MC = Metropolis + reweighting on-fly + <u>update with tunable param θ </u>.

Other possibility: FLOW based model (M. S. Albergo et al. 1904.12072)

Exact algorithm is needed **Self-learning Monte Carlo (SLMC)**

SLMC for spin systems

$$P(S_{k'} | S_k) = \min\left(1, \frac{e^{-\beta(H[S_k] - H_{eff}^{\theta}[S_k])}}{e^{-\beta(H[S_k] - H_{eff}^{\theta}[S_k])}}\right)^{\theta: \text{ tunable paramet}} Q_{eff}^{\theta}(S_{k'} | S_k)$$

$$\theta$$
: tunable parameter = coupling

J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137)

Proposing part

Corrected by modified Metropolis test

Update using effective model this must satisfy detailed balance

This is an exact algorithm:

if the effective model far from the system, acceptance is zero.

Testcase

$$H = -J \sum_{\langle ij \rangle} S_i S_j - K \sum_{ijkl \in \Box} S_i S_j S_k S_l,$$

No "efficient" update because of 2nd term

 $H_{\rm eff} = E_0 - \tilde{J}_1 \sum S_i S_j$ $\langle ij
angle_1$ $S_i = \pm 1$

Ising model with parameter J_1 , which is determined by fitting! (no fancy ML is needed!) This has effective update

Exact algorithm is needed Self-learning Monte Carlo (SLMC)

SLMC for spin systems

$$P(S_{k'} | S_k) = \min\left($$

Accept/Reject

$$e^{-\beta(H[S_{k'}] - H_{eff}^{\theta}[S_{k'}])}$$

 $e^{-\beta(H[S_{k}] - H_{eff}^{\theta}[S_{k}])}$

Proposing part
$$\mathbf{i}$$
 θ : tunable parameter = coupling

 $Q_{eff}^{\theta}(S_{k'} | S_k)$

J.Liu, Y.Qi, Z.Meng, L.Fu (arXiv:1610.03137)

Corrected by modified Metropolis test Update using effective model this must satisfy detailed balance

This is an exact algorithm.

A.I. FOR NUCLEAR PHYSICS

Exact algorithm is needed **QCD with Self-learning Monte Carlo**

work in progress

SLMC for lattice QCD

Collaborate with Akinori Tanaka (Riken AIP/ iTHENS) Yuki Nagai (JAEA/ RIKEN AIP)

Akio Tomiya

$$P(U_{k'} | U_k) = \min\left(1, \frac{e^{-(S[U_{k'}] - S_{eff}^{\theta}[U_{k'}])}}{e^{-(S[U_k] - S_{eff}^{\theta}[U_k])}}\right) \frac{\theta: \text{tunable parameter} = \text{ coupling}}{Q_{eff}^{\theta}(U_{k'} | U_k)}$$

Setup: SU(2) plaquette action + staggered quarks with ma = 0.5 Effective action = hopping parameter expanded action = pure-gluonic, heatbath

$$S[U] = \beta_{\rm pl} \Box + \bar{\psi}(D_{\rm stag} + m)\psi$$

Our

r choice:
$$S_{eff}[U] = \tilde{\beta}_{pl} + \tilde{\beta}_{rec} + \tilde{\beta}_{*} + \cdots$$

Parameters determined by HMC with linear regres

ssion or we can use SLMC ("self-learning" way of use)

Preliminary result QCD with Self-learning Monte Carlo

work in progress

SLMC for lattice QCD

Collaborate with Akinori Tanaka (Riken AIP/ iTHENS) Yuki Nagai (JAEA/ RIKEN AIP)

$$P(U_{k'} | U_k) = \min\left(1, \frac{e^{-(S[U_{k'}] - S_{eff}^{\theta}[U_{k'}])}}{e^{-(S[U_k] - S_{eff}^{\theta}[U_k])}}\right) \frac{\theta: \text{tunable parameter} = \text{ coupling}}{Q_{eff}^{\theta}(U_{k'} | U_k)}$$

Setup: SU(2) plaquette action + staggered quarks with ma = 0.5 Effective action = hopping parameter expanded action = pure-gluonic, heatbath

A.I. FOR NUCLEAR PHYSICS

3. QCD spectral function via sparse modeling

Work in progress, very preliminary

A. Tomiya

QCD spectral function?

It contains everything, but we cannot obtain

Two point functions $G(\tau)$ can be calculate on the lattice,

 $G(\tau) = \langle O(\tau) O^{\dagger}(0) \rangle \,.$

Corresponding QCD spectral function $\rho(\omega)$ contains every information of QCD for that channel,

 $G(\tau) = \int d\omega K(\tau, \omega) \rho(\omega)$ $\bar{K}(\tau, \omega) \sim \text{cosh: kernel}$

Practically, we can not obtain ρ because,

Sparse Modeling?

Fitting with L1 regulator (=LASSO, least absolute shrinkage and selection operator)

Apply the singular value decomposition (also used in MEM),

Why L1 regulator works?

L1 regulator can kill ambiguities well = sparseness

Even if the equation has statical noise, a solution with L1 constraint is robust (insensitive to noise)

A.I. FOR NUCLEAR PHYSICS

Application of ML to physics

(In practice, we add positivity constraint for ρ to L.)

Application of ML to physics

29

Sparseness and LASSO Minimize chi-square + L1 constraint in SVD basis

Original Problem:

We want to determine O(1000) points of ρ from O(10) data

This means, O(10) points of ρ in some basis can be determined because we don't have information.

BUT, in SVD basis, the spectral function is sparse!

So, ρ can be obtained by minimizing,

$$L(\tilde{\rho};\lambda) = |\tilde{G} - S\tilde{\rho}|_{2}^{2} + \lambda |\tilde{\rho}|_{1}$$

 $\rho = V \tilde{\rho}$

and,

Ohtsuki et al. 2017 for cond. mat.

(very) Preliminary results Mock data + noise: it is well reconstructed ...?

$$\left|\rho_{rec}(\omega) - \rho_{mock}(\omega)\right|_2 = 0.1071$$

Summary Machine learning provides us new techniques

- 1. Neural network can detect phase transition in classical spin chain
- 2. SLMC can generate meaningful gauge configurations
- 3. Sparse modeling can reconstruct QCD spectral function (for mock data though)

Todo:

- 5. Application of SLMC to physical system; right top corner of the Columbia plot
- 6. Improve SLMC by adding more and more terms, neural net may help + extend to SU(3)
- 7. More test on sparse modeling and apply to real lattice qcd data
- **Comment:** Our community should discuss systematic error from ML techniques, if it is not exact (Benefit of LQCD is quantitativity).
 - How can we control or evaluate error?

Thanks!

Backup

Results 2/2 Output of first layer ~ Magnetization

 $\{\sigma_i\}$

K. Kashiwa, Y. Kikuchi AT 1812.01522

-> x is correlated to the magnetization
 (automatically captured)

This means, W₁ represents correlation between temperature and magnetization!

 W_0

A.I. FOR NUCLEAR PHYSICS

Application of ML to physics

Akio Tomiya

20units

Markov chain Monte-Carlo

It has inefficiency from correlation between samples

 Γ or τ_{ac} measures similarity of configurations

A.I. FOR NUCLEAR PHYSICS

Effect of long autocorrelation Autocorrelation makes signals/noise ratio bad

 $au_{ac} \sim \xi^z \sim L^z \quad rac{\zeta: Dynamic critical exponent}{ au_{ac}: Algorithm dependent}$ (N. Madras et. al 1988)

If we find an algorithm with smaller z (or shorter τ_{ac}), it enables us precise/large scale research around the critical regime!

Markov chain Monte-Carlo? Akio Tomiya If detailed balance satisfied, we can sample using it Akio Tomiya

A key concept is the detailed balance condition:

If an update algorithm P(.|.) satisfies

$$P(\phi_{k'} | \phi_k) e^{-S[\phi_k]} = P(\phi_k | \phi_{k'}) e^{-S[\phi_{k'}]}$$

it will give configurations with a desired distribution (skip proof)

$$P_{eq}(\phi) = \frac{1}{\int \mathscr{D}\phi' e^{-S[\phi']}} e^{-S[\phi]}$$

We have to fight for autocorrelation! Akio Tomiya

Machine Learning techniques could reduce autocorrelation

$$\begin{split} \langle O[\phi] \rangle &= \frac{1}{N} \sum_{k}^{N} O[\phi_{k}] \pm O(\frac{1}{\sqrt{N_{indep}}}) \\ N_{indep} &= \frac{N}{2\tau_{ac}} \end{split}$$
$$\bar{\Gamma}(t) &= \frac{1}{N-t} \sum_{k} (O[\phi_{k+t}] - \bar{O})(O[\phi_{k}] - \bar{O}) \sim e^{-t/\tau_{ac}} \end{split}$$

 τ_{ac} is given by an update algorithm (N. Madras et. al 1988)

- Correlation between generated configurations are estimated by autocorrelation time τ_{ac}
- Autocorrelation time τ_{ac} depends on an update algorithm
- If τ_{ac} becomes half, statistics becomes effectively double in same cost in time!

I attempt to generate configurations using machine learning!

Exact algorithm is needed QCD with Self-learning Monte Carlo

work in progress

Collaborate with Akinori Tanaka (Riken AIP/ iThems) Yuki Nagai (JAEA/ RIKEN AIP)

Akio Tomiya

$$P(U_{k'} | U_k) = \min\left(1, \frac{e^{-(S[U_{k'}] - S_{eff}[U_{k'}])}}{e^{-(S[U_k] - S_{eff}[U_k])}}\right) Q_{eff}(U_{k'} | U_k)$$

Setup: SU(2) plaquette action + staggered quarks Effective action = hopping parameter expanded action, heatbath

Autocorrelation (=HMC, =SLMC) HMC 1.0 1.0 HMC SLMC SLMC SLMC 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 02 0.2 0.2 0.0 0.0 0.0 Also good

Exact algorithm is needed QCD with Self-learning Monte Carlo

work in progress

Collaborate with Akinori Tanaka (Riken AIP/ iThems) Yuki Nagai (JAEA/ RIKEN AIP)

$$P(U_{k'} | U_k) = \min\left(1, \frac{e^{-(S[U_{k'}] - S_{eff}[U_{k'}])}}{e^{-(S[U_k] - S_{eff}[U_k])}}\right) Q_{eff}(U_{k'} | U_k)$$

Setup: SU(2) plaquette action + staggered quarks Effective action = hopping parameter expanded action, heatbath

of operation of $(D[U] + m)^{-1}$ Acceptance# of operation of $(D[U] + m)^{-1}$ HMC : 90%26SLMC : 60%1Bad news: now it works only for m > 1Stay tuned

QCD spectral function? QCD with Self-learning Monte Carlo

$$G(\tau) = \int d\omega \bar{K}(\tau, \omega) \rho(\omega) \qquad \bar{K}(\tau, \omega) = \omega^2 (e^{-\tau\omega} + e^{-(N_\tau - \tau)\omega})$$

$$G_\tau = \sum_{\omega} \bar{K}_{\tau,\omega} \rho_\omega$$

$$G_\tau = \bar{K}_{\tau,\omega} \cdot \rho_\omega$$

$$O(10) \qquad O(10^3)$$

Introduction What does "Machine learning" give us?

What supervised learning does (~ deep learning, neural nets):

Introduction What does "Machine learning" give us?

What supervised learning does (~ deep learning, neural nets):

Introduction What does "Machine learning" give us?

What supervised learning does (~ deep learning, neural nets):

 $D_{KL}(\theta) \ge 0$: "Distance between correct answer to current output" (cf: chi square in fitting, θ = a set of parameters)

- Machine learning (∋ deep learning) basically, make a "map" between data and output
- It could be deterministic (neural nets) or stochastic (generative models, later)

Unsupervised learning in a nutshell Akio Tomiya Information comes from a probability distribution

$$\begin{aligned} \partial_{\theta} D_{\theta}(P \parallel P_{\theta}) &= -\int \mathscr{D} x P(x) \partial_{\theta} \log(P_{\theta}(x)) \\ P_{\theta}[x] &= \frac{1}{Z_{\theta}} e^{-H_{\theta}[x]} \\ &= -\int \mathscr{D} x P(x) \partial_{\theta}(-H_{\theta}[x] - \log Z_{\theta}) \\ &= \int \mathscr{D} x P(x) (\partial_{\theta} H_{\theta}[x] + \frac{1}{Z_{\theta}} (\int \mathscr{D} y \partial_{\theta} e^{-H_{\theta}[y]})) \\ &= \int \mathscr{D} x P(x) \partial_{\theta} H_{\theta}[x] - \frac{1}{Z_{\theta}} \int \mathscr{D} y H_{\theta}[y] e^{-H_{\theta}[y]} \end{aligned}$$

Unsupervised learning in a nutshell Akio Tomiya Inverse of Ising model ~ Boltzmann machine

Eg. Generalized Ising model (spin glass)

$$H_{\theta}[\sigma] = \beta \sum_{ij} K_{ij} \sigma_{i} \sigma_{j} \xrightarrow{\sigma_{i}: \text{ spin}}_{K_{ij}: \text{ coupling}}$$
What physicists want to do
$$M_{\theta} = \int_{i} \frac{1}{Z_{\theta}} \sum_{i} e^{-H_{\theta}[\sigma]}_{i}$$

$$\theta = \{K_{ij}, \beta | \text{ parameters } \}$$

Unsupervised learning in a nutshell Akio Tomiya

- Once determine a coupling K (= training), we can use it.
- Sampling from parametrized distribution is needed