
Speeding up Hadron Correlator Calculations

with Machine Learning

Giovanni Pederiva

4 March 2020

Michigan State University

Outline

1. Quark Propagators and Hadron Two-Point Correlation Functions

2. Some Machine Learning

3. ML for Two-Point Correlators

4. Results

1

Quark Propagators and Hadron

Two-Point Correlation

Functions

Hadron Correlators

An important hadronic observable is the two-point correlator. They

can be interpreted via spectral decomposition 1

C(t) = a3
∑

x
〈O(t,x)Ō(0,0)〉 =

∑
k

〈0| Ô |k〉 〈k| ˆ̄O |0〉 e−tEk

Where O(t) is an interpolating operator of the desired hadron state.
For example:

Pion: Oπ+(x) = d̄(x)α,c(γ5)αβu(x)β,c
Proton: OP(x) = εabcu(x)α,a

(
u(x)T

β,bC(γ5)βγd(x)γ,c
)

1
Notation taken from C. Gattringer and C. B. Lang, ”Quantum Chromodynamics on the Lattice”, Springer, 2010

2

The Quark Propagator

The term, for a generic quark flavor q

〈q(x)α,a q̄(y)β,b〉 = D−1(y, x)αβab

is the inverse of the Dirac operator. In principle, one needs to invert

the whole matrix. However, one can set:

ηβ,b(0) = δb,c1δβ,α1δy,0

A simple point-like source. The problem is then reformulated as:

D(0, x)αβab q(x)α,a = ηβ,b(0)

Equivalent to computing only one column of the inverse matrix.

3

A Linear System

The problem is now reduced to a linear system of the very simple

form Dq = η, where η are 3 × 4 = 12 different source vectors (Dirac
and color indices).

The matrix D is the Dirac operator, a very sparse matrix (its exact

form depends on the lattice action).

Note: for every quark flavor, we have an ensemble of linear systems.

4

Iterative Solvers

This kind of linear systems is usually solved using iterative methods.

One of the simplest ones it the Conjugate Gradient, but many

variations are used. For example, the BiCGStab is a common choice

because it works for non-hermitian operators.

These iterative solvers are terminated at convergence, when for a

small parameter ε:

||Axn − b|| < ε
5

Some Machine Learning

Machine Learning Algorithms

Machine Learning, in particular Supervised Learning, can be used to

build predictive models from data. It is mostly useful when the

correlation between two sets of data is hard to define functionally.

Multiple methods exist, for example:

• Linear regression: very simple, few parameters, can capture

simple correlations.

• Boosted Decision Trees: moderately simple piece-wise constant

function, more parameters.

• Neural Networks: complicated functional form, many

parameters, can capture very complicated correlations.

6

Machine Learning Algorithms

Machine Learning, in particular Supervised Learning, can be used to

build predictive models from data. It is mostly useful when the

correlation between two sets of data is hard to define functionally.

Multiple methods exist, for example:

• Linear regression: very simple, few parameters, can capture

simple correlations.

• Boosted Decision Trees: moderately simple piece-wise constant

function, more parameters.

• Neural Networks: complicated functional form, many

parameters, can capture very complicated correlations.

6

Machine Learning Algorithms

Machine Learning, in particular Supervised Learning, can be used to

build predictive models from data. It is mostly useful when the

correlation between two sets of data is hard to define functionally.

Multiple methods exist, for example:

• Linear regression: very simple, few parameters, can capture

simple correlations.

• Boosted Decision Trees: moderately simple piece-wise constant

function, more parameters.

• Neural Networks: complicated functional form, many

parameters, can capture very complicated correlations.

6

Boosted Decision Trees

Each tree is a simple binary split tree that leads to a piece-wise

constant function. Parametrized by the split points xi and the

constant values yj :

7

Boosted Decision Trees

A linear combination of piece-wise constant functions, where both

the section bounds and constant values are parameters. 2

2
Image from scikit-learn.org/

8

scikit-learn.org/

Neural Networks

Input Layer

First

Hidden Layer

Output Layer

Second

Hidden Layer

A chain of affine transformations and non-linear functions f at each
layer. Universal approximant of functions Rn → Rm .

9

ML for Two-Point Correlators

The Goal

The main idea of this work is to try to accelerate the computation of the

linear system for the quark propagator. We use numerical data for different

stopping parameters ε to as training and prediction data sets.

For example, using a precise measurement of the propagator (ε = 10−8) on

a subset of the ensemble and a less precise (sloppy) one

(ε = 10−1, 10−2, 10−3) on the whole ensemble.

Compute a precise correlator and
a sloppy correlator on a fraction
of the ensemble for training and
bias correction

Use only the information of
 the sloppy correlator to
estimate the precise one

Total ensemble size

Bias correction set

Training Set

Expensive inversions

Cheap inversions

To properly estimate the uncertainty bias-correction and boostrap are used.
10

Gauge Field Ensembles Used

β κl κs L/a T/a a [fm] mπ [MeV] N
M1 1.90 0.13700 0.1364 32 64 0.0907(13) 699.0(3) 399
M2 1.90 0.13727 0.1364 32 64 0.0907(13) 567.6(3) 400
M3 1.90 0.13754 0.1364 32 64 0.0907(13) 409.7(7) 450
A1 1.83 0.13825 0.1371 16 32 0.1095(25) 710(1) 800
A2 1.90 0.13700 0.1364 20 40 0.0936(33) 676.3(7) 790

Ensembles from the PACS-CS collaboration3, with clover fermions.

Physical quantites calculated for another work4

3PACS-CS, S. Aoki et al., Phys. Rev.D79, 034503 (2009), 0807.1661
4J. Dragos, A. Shindler et al., (2019), arXiv:1902.03254v2

11

Times

−9−8−7−6−5−4−3−2−10
log10(ε)

0

250

500

750

1000

1250

1500

1750

Av
er

ag
e

so
lv

er
tim

e
[s]

Times For BiCGStab Solver for Quark Propagator

A2 203 × 40 mπ = 676 MeV
A1 163 × 32 mπ = 710 MeV
M1 323 × 64 mπ = 700 MeV
M2 323 × 64 mπ = 570 MeV
M3 323 × 64 mπ = 410 MeV

12

Correlations Maps

Meson Correlation Coefficient:

Γ(P,S) = 1
NσPσS

N∑
i
(CP

i − C̄P)(CS
i − C̄S)

Correlation between sloppy meson correlator data and precice

meson correlators. Calculated on ensemble A1, between ε = 10−2

and ε = 10−8.

13

Correlations Maps

Baryon Correlation Coefficient:

Γ(P,S) = 1
NσPσS

N∑
i
(CP

i − C̄P)(CS
i − C̄S)

Correlation between sloppy baryon correlator data and precice

baryon correlators. Calculated on ensemble A1, between ε = 10−2

and ε = 10−8.

14

Correlation Between Different Precisions

0 1 2 3 4
Sloppy Correlator ×10−21

0

1

2

3

4

Pr
ec

ise
C

or
re

la
to

r
×10−21

Raw Nucleon Correltor Data for Ensemble M3 for t = 5, εs = 10−2 εp = 10−8

15

Correlation Between Different Precisions

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Sloppy Correlator ×10−25

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Pr
ec

ise
C

or
re

la
to

r

×10−25

Raw Nucleon Correltor Data for Ensemble M3 for t = 35, εs = 10−2 εp = 10−8

16

Example Effective Mass

0 5 10 15 20 25 30
Euclidean Time

0.0

0.5

1.0

1.5

2.0

2.5

m
ef
f

[G
eV

]
Pion Effective Mass Raw Data for Ensemble M1

ε = 10−8

ε = 10−3

ε = 10−2

ε = 10−1

17

Example Effective Mass

0 5 10 15 20 25 30
Euclidean Time

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
ef
f

[G
eV

]
Proton Effective Mass Raw Data for Ensemble M2

ε = 10−8

ε = 10−3

ε = 10−2

ε = 10−1

18

Results

Example Effective Mass from ML

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Euclidean Time

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

m
ef
f

[G
eV

]
Pion Effective Mass for Ensemble M2 using NL/N = 0.1

Exact ε = 10−8

Training ε = 10−2

Training ε = 10−8

ML Estimate BDT

19

Example Effective Mass from ML

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Euclidean Time

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

m
ef
f

[G
eV

]
Proton Effective Mass for Ensemble M2 using NL/N = 0.1

Exact ε = 10−8

Training ε = 10−2

Training ε = 10−8

ML Estimate BDT

20

Performance Analysis

Ens. ε N NL ts tp τML Pion σ(mML
eff)/σ(meff) Nucl. σ(mML

eff)/σ(meff) Pion h Nucl. h
A1 10−1 800 240 5.497 54.958 0.370 1.628 2.185 0.981 1.767
A1 10−2 800 240 13.238 54.958 0.469 1.154 1.073 0.624 0.539
A1 10−3 800 240 20.542 54.958 0.562 1.162 1.088 0.759 0.665
A2 10−1 790 237 55.855 414.755 0.394 2.322 2.263 2.127 2.018
A2 10−2 790 237 120.163 414.755 0.503 1.293 1.320 0.841 0.876
A2 10−3 790 237 179.169 414.755 0.602 1.252 1.191 0.944 0.855
M1 10−1 399 119 47.269 616.181 0.354 4.462 2.210 7.041 1.728
M1 10−2 399 119 122.318 616.181 0.439 1.508 1.409 0.998 0.872
M1 10−3 399 119 204.950 616.181 0.533 1.355 1.302 0.978 0.904
M2 10−1 400 120 56.410 848.848 0.347 3.765 2.590 4.911 2.325
M2 10−2 400 120 171.468 848.848 0.441 1.353 1.142 0.808 0.576
M2 10−3 400 120 303.351 848.848 0.550 1.181 1.083 0.767 0.646
M3 10−1 450 135 77.236 1606.996 0.334 3.116 2.536 3.239 2.145
M3 10−2 450 135 311.664 1606.996 0.436 1.299 1.349 0.735 0.793
M3 10−3 450 135 521.557 1606.996 0.527 1.222 1.231 0.787 0.799

Where we have defined the scaled time τML and the overall gain h
as:

τML =
ts · NL + tp · NP

tp · N
≤ 1 h =

(
σML

meff

σmeff

)2

· τML

21

Performance Analysis

22

Using more information at once

As a second step, one could try to use more information at the same

time. In particular we construct a function to approximate the

precise data:

CP(t) ≈ ΓML (C ε1(t),C ε2(t), ...,C εn (t))

where C εi (t) is the correlator at precision ε = 10−i .

Input Layer

First

Hidden Layer

Output Layer

Second

Hidden Layer

23

Using more information at once

Furthermore we can define

CP(t) ≈ ΓML (C ε1(t),C ε2(t), ...,C εn (t),C ε1(t ± 1),C ε2(t ± 1), ...,C εn (t ± 1), ...)

Input Layer

First

Hidden Layer

Output Layer

Second

Hidden Layer

24

Using more information at once

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Euclidean Time

0.5

1.0

1.5

2.0

2.5

3.0

m
ef
f

[G
eV

]
Proton Effective Mass for Ensemble M3 using NL/N = 0.15,

Precisions ε = 10−1 and ε = 10−2

Exact
Linear Single
Linear Multi
NN

25

Using more information at once, nearest neighbors

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Euclidean Time

0.5

1.0

1.5

2.0

2.5

3.0

m
ef
f

[G
eV

]
Proton Effective Mass for Ensemble M3 using NL/N = 0.15,

Precisions ε = 10−1 and ε = 10−2 and 2 Nearest Neighbor Radius

Exact
Linear Single
Linear Multi
NN

26

NN for Full Correlator

One further try could be to construct a Neural Network that can

directly compute the correlator at all euclidean time at the same

time.

Input Layer

First

Hidden Layer

Output Layer

Second

Hidden Layer

Some issues here are the increasing number of parameters to

handle, the normalization of the data (correlators are exponentially

decreasing with euclidean time) and the possible correlation of the

data at different euclidean times in the output. 27

NN for Full Correlator

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Euclidean Time

0.5

1.0

1.5

2.0

2.5

3.0

m
ef
f

[G
eV

]
Proton Effective Mass for Ensemble M3 using NL/N = 0.30,

Precisions ε = 10−1, ε = 10−2 and all times at one

Precise: ε = 10−8

Linear Single ε = 10−2

NN

28

NN for Full Correlator

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Euclidean Time

0.5

1.0

1.5

2.0

2.5

3.0

m
ef
f

[G
eV

]
Proton Effective Mass for Ensemble M3 using NL/N = 0.30,
Precisions ε = 10−1, ε = 10−2, ε = 10−3 and all times at one

Precise: ε = 10−8

Linear Single ε = 10−3

NN

29

Further Work

• Define a reliable set of hyper-parameters that is usable

independently of the ensemble properties

• Better test the stability as a function of the lattice spacing and

quark masses

• Extend to study large volumes

• Possibly define cuts for different algorithms in the euclidean

time domain (linear for small t, NN for t ≈ T/2)

30

Further Work

• Define a reliable set of hyper-parameters that is usable

independently of the ensemble properties

• Better test the stability as a function of the lattice spacing and

quark masses

• Extend to study large volumes

• Possibly define cuts for different algorithms in the euclidean

time domain (linear for small t, NN for t ≈ T/2)

30

Further Work

• Define a reliable set of hyper-parameters that is usable

independently of the ensemble properties

• Better test the stability as a function of the lattice spacing and

quark masses

• Extend to study large volumes

• Possibly define cuts for different algorithms in the euclidean

time domain (linear for small t, NN for t ≈ T/2)

30

Further Work

• Define a reliable set of hyper-parameters that is usable

independently of the ensemble properties

• Better test the stability as a function of the lattice spacing and

quark masses

• Extend to study large volumes

• Possibly define cuts for different algorithms in the euclidean

time domain (linear for small t, NN for t ≈ T/2)

30

Potential Impact

• Significant speedup of the calculations for quark propagators

(we have time gain of≈ 2 for ε = 10−3 and NL/N = 30%)

• Possible adaptation to improve the speed of the calculation for

pseudo-fermions in the HMC algorithm.

• Could enable the calculations on large lattices, where the Dirac

operator is prohibitevely large.

31

Potential Impact

• Significant speedup of the calculations for quark propagators

(we have time gain of≈ 2 for ε = 10−3 and NL/N = 30%)

• Possible adaptation to improve the speed of the calculation for

pseudo-fermions in the HMC algorithm.

• Could enable the calculations on large lattices, where the Dirac

operator is prohibitevely large.

31

Potential Impact

• Significant speedup of the calculations for quark propagators

(we have time gain of≈ 2 for ε = 10−3 and NL/N = 30%)

• Possible adaptation to improve the speed of the calculation for

pseudo-fermions in the HMC algorithm.

• Could enable the calculations on large lattices, where the Dirac

operator is prohibitevely large.

31

Acknowledgments

• This work is done in collaboration with A. Shindler

• We thank A. Bazavov, D. Lee, M. Rizik and J. Weber for the

discussions

• The computational resources were provided by ICER at MSU

32

Thank You

32

Backup Material

Bias correction

When fitting, there could be some bias on the sample average

depending on the subset used for training:

So we further split our training data set and compute the

expectation value as:

C̄ =
1

N − NL

∑
i∈prediction

CP
i +

1
NB

∑
i∈biascorr

(Ci − CP
i)

Bootstrapping

To estimate the error on the expectation value of the observable,

multiple bootstrap samples are used.

Boostrapping is a common resampling method used in LQCD

analysis. It consists of taking a random sample of a quantity O from

a given set of N data with repetitions. This is performed K times:

Ck =
1
N

N∑
i

C∗
i

One then sets the estimator of O as:

C̄ =
1
K

K∑
i

Ck, σ2
C = C̄ =

1
K

K∑
i
(C̄ − Ck)

2

The training and prediction set are bootstrapped independently.

	Quark Propagators and Hadron Two-Point Correlation Functions
	Some Machine Learning
	ML for Two-Point Correlators
	Results
	Appendix
	Backup Material

