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Preliminaries

● I will not attempt to summarize all of the 

past and ongoing work on using ML for 

High Energy Physics

● I will focus primarily on the experiments 

at CERN’s Large Hadron Collider (LHC)
o They have big data challenges which ML 

applications can help to address

● I will try to emphasize ML aspects that I 

view as most forward-facing toward the 

next decade

Terminology

Systems that make decisions usually 
requiring a human level of expertise, 
possessing the qualities of intentionality, 
intelligence and adaptability
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CERN’s Large Hadron Collider (LHC)
Mont Blanc

Lake Geneva

Mont Blanc• At the LHC, counter-rotating proton 
beams cross with a frequency of 40 MHz

• The beams consist of ~2500 bunches of O(100 billion) protons 
per bunch that are steered into one another
→ Each pp collision produces of O(103) particles!

• These beams are squeezed to increase the collision rate and 
therefore increase the chance of producing interesting but rare 
physics for discovery science
→ comes with a price: multiple pp interactions per bunch crossing (“pile-up”) 

that can obscure the most interesting (hard scattering) physics
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jets

Higgs

✖1 million smaller!



LHC Schedule
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Higgs boson
discovery

Today Start of HL-LHC physics
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● Higher luminosity running 
leads to increase size and 
complexity collision data

→ a serious challenge for detector 
triggering and event reconstruction 
in the experiments during HL-LHC 
(<μ>~200) running!

Collision event recorded by the CMS detector during a 
high luminosity running of the LHC with <μ> ~ 100



Typical LHC data flow
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Level 1 Trigger
99.75% of events rejected!

High Level Trigger
99% of events rejected!

Offline Reconstruction @ Tier-0

Higgs Discovery!
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O(100 TB/s)

100 kHz

1 kHz
1 MB / event

Lots of  human  & artificial 
intelligence steps  here! 



Typical LHC data flow

11Collisions

Level 1 Trigger
99.75% of events rejected!

High Level Trigger
99% of events rejected!

Offline Reconstruction @ Tier-0

40 MHz
O(100 TB/s)

100 kHz

1 kHz
1 MB / event

Lots of  human  & artificial 
intelligence steps  here! 

99.9975% of collision events are rejected while 
retaining those essential for our science!

à Must continually choose a winner out of 
40,000 (avg.) very wisely and must choose it 
very fast! Higgs Discovery!
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> 1 GB/s

~0.7 GB/s

> 1 GB/s

~10 GB/s

LHC Experiments generate ~50 PB/year of science data (during Run 2)



Blueprint Activity and Process
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The HL-LHC Challenge
ATLAS & CMS will record ~10 times as much data from ~100 times as many 
collisions as were used to discover the Higgs boson (and at twice the energy). 

The HL-LHC will produce exabytes of science data per year, with increased 
complexity: an average of 200 overlapping pp collisions per event

Several large US software and computing projects have been initiated to help 
address these challenges, including:

Institute for Research & Innovation in Software for HEP (IRIS-HEP)
• IRIS-HEP begin in September 2018 and resulted from a 2-year community-

wide effort involving 18 workshops and 8 position papers, most notably a 
HEP Software Foundation Community White Paper and a Strategic Plan.

HEP Center for Computational Excellence (HEP-CCE)
• A cross-cutting initiative to promote excellence in high performance 

computing (HPC) including data-intensive applications, scientific 
simulations, and data movement and storage.

Many HEP problems can be recast as ML problems à ML is rapidly playing a 
key role in addressing HL-LHC challenges & enabling new science capabilities!

http://iris-hep.org/
https://link.springer.com/article/10.1007%2Fs41781-018-0018-8
https://inspirehep.net/record/1644096?ln=en
https://www.hepcce.org/


E.g. Event Classification
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arXiv:2002.07546

● Sensitive probe 
of new physics 
(e.g. FCNCs)

● Trained an artificial neural network (ANN) to 
classify tZq events using simulated data for 
improved signal and background separation

○ ANN performance validated by studying 
events with similar signatures (control regions) 
that are dominated by background processes

● Observation of electroweak single top quark 
production in association with a Z boson and 
a quark (ppàtZq) by the ATLAS Collaboration

https://arxiv.org/abs/2002.07546


E.g. “Object” (t-quark) Classification
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arXiv:1902.09914Comparison of many “state-of-the-art” ML-based top-quark taggers
○ Image-based

• CNN
• ResNeXt

○ 4-vector-based
• TopoDNN
• Multi-Body N-Subjettiness (Nsub)
• TreeNiN
• Particle-level CNN (P-CNN)
• ParticleNet

○ Theory-inspired taggers
• Lorentz-boost network (LBN)
• Lorentz-Layer (LoLa)
• Latent Dirichlet Allocation (LDA)
• Energy Flow Polynomials (EFP)
• Energy Flow Network (EFN)
• Particle Flow Network (PFN)

https://arxiv.org/pdf/1902.09914.pdf


E.g. ML-based Fast Shower Simulation
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ATLAS: Simulation is the largest use of distributed computing resources and ~80% of 
that is calorimeter simulation 

ATL-SOFT-PUB-2018-001

Two of the most promising ML-based 
approaches studied thus far:

Variational Autoencoder (VAE)
• Encode representation of Geant4 

showers into latent space
• Use decoder to generate new showers

Generative Adversarial Networks (GAN)
• Train a generator for new showers
• Critic: Difference between generated

shower and Geant 4
• Second Critic for total shower energy

SIM-2019-004
SIM-2019-006
SIM-2019-007

https://cds.cern.ch/record/2630433
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-006/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-007


E.g. ML-based Fast Shower Simulation
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ATLAS: Simulation is the largest use of distributed computing resources and ~80% of 
that is calorimeter simulation 

Two of the most promising ML-based 
approaches studied thus far:

Variational Autoencoder (VAE)
• Encode representation of Geant4 

showers into latent space
• Use decoder to generate new showers

Generative Adversarial Networks (GAN)
• Train a generator for new showers
• Critic: Difference between generated

shower and Geant 4
• Second Critic for total shower energy



E.g. NN Stability / Decorrelation

● Goal: Stabilize discriminator against systematic uncertainty or other effect
● Adversarial training (e.g. decorrelate jet mass)
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E.g. Triggering with Autoencoders
● Without algorithmic or other (e.g. hardware) improvements, trigger requirements 

become more restrictive at the HL-LHC to fit into computing constraints à
decreasing sensitivity to some beyond-the-SM (BSM) signatures

● Unsupervised learning can be used to train the trigger to identify BSM physics as 
anomalies in the data stream
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Since the compression capability of an AE network 
does not generalize well to other data, we can use 
the loss (encoder-decoder distance) to identify events 
not representative of the training data (i.e. anomalies)

Autoencoder (AE):
arXiv:1811.10276

https://arxiv.org/pdf/1811.10276.pdf


E.g. Triggering with Autoencoders
● SM cocktail dataset as 

collected with isolated 
single lepton trigger

● 21 input quantities: lepton 
momentum, isolation, 
charge, number of jets, 
missing transverse 
energy, etc... → very 
generic and intended to 
be BSM signal agnostic

● Triggered events could be
written to a special
“anomaly” data stream for 
additional analysis 22



E.g. Tracking w/ Graph Neural Networks
● Data relationships in many real-world applications can be naturally 

represented by graphs
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● Graph Neural Networks (GNNs) are deep learning based methods that capture 
dependencies on graphs via message passing between the nodes of graphs

● GNNs are well-suited to pattern recognition－a key element of reconstructing 
charged particles in tracking detectors

● Work on GNN approaches to tracking and calorimetry initiated by HEP.TrkX and is 
being driven by the EXA.TrkX group (see their 2019 NeurIPS paper). Several
members of IRIS-HEP are collaborating on this effort

● Detector measurements are represented as graph nodes which are associated with 
one another by learned graph edges that represent the particle tracks

https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf


E.g. Tracking w/ Graph Neural Networks
● We use the TrackML Challenge 

Data for training & evaluation
● Preprocessing for GNN models 

use HEP.TrkX libraries with a 
truth particle pT> 2 GeV cut
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● GNN-based inference can 
be implemented on FPGAs 
to accelerate 
computationally expensive 
parts of the event 
reconstruction such as 
calorimetry and tracking in 
the ATLAS or CMS High-
Level (software) trigger
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E.g. Real-time ML-based Inference
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E.g. Real-time ML-based Inference



E.g. Real-time ML-based Inference
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E.g. Real-time ML-based Inference

28

http://fastmachinelearning.org

arxiv.1804.06913 

Read our White Paper on how accelerated ML can be 
applied across many fields of fundamental physics!

http://fastmachinelearning.org/
https://fastmachinelearning.org/images/coproc_whitepaper_v0.pdf
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Workshop on Sept 10-11, 2019 @ Fermilab Workshop Webpage & Report

Hosted at the Fermilab LPC and co-located with the 
FastML “developer bootcamp” which held tutorials and 
hackathon (195 registered participants!)

E.g. Real-time ML-based Inference

Read our White Paper on how accelerated ML can be 
applied across many fields of fundamental physics!

https://indico.cern.ch/event/822126/
https://github.com/iris-hep/blueprint/blob/master/reports/2019/Fast-Machine-Learning-and-Inference/report.pdf
https://fastmachinelearning.org/images/coproc_whitepaper_v0.pdf


Fast Machine Learning and Inference
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Looking forward…
● Many HEP problems can be recast as ML problems ML is rapidly playing a key 

role in addressing HL-LHC challenges & enabling new science capabilities
● Some key areas of ML for HEP going forward as I see it (some topics were 

covered in this talk, but many not):
○ Fast (accelerated, “real-time”) ML training and inference
○ Adversarial training, data augmentation
○ Supervised learning with raw detector information (“whole-event ML”)
○ Unsupervised learning, anomaly detection
○ Weakly supervised learning (e.g. CWoLa, Tag ‘N Track)
○ Reinforcement learning
○ Deep Generative Models for Fast Detector Simulation
○ Uncertainty quantification
○ Graph-based learning
○ Training and Workforce development
○ Physics-inspired -driven network architectures 31
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Collision event recorded by the CMS detector during a 
high luminosity running of the LHC with <μ> ~ 100

Bender: Come on, Fry. I really wanna see it 
[the year 2000]. You know how I yearn for a 
simpler time... a time of barn dances and buggy 
rides before life was cheapened by heartless, 
high-tech machines.

Leela: But, Bender, you are a—
Bender: [dismissive] blah blah blah blah …

Credit: CERN

Thanks!


