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Preliminaries

e | will not attempt to summarize all of the
past and ongoing work on using ML for

High Energy Physics
e | will focus primarily on the experiments
at CERN'’s Large Hadron Collider (LHC)

O They have big data challenges which ML
applications can help to address

e | will try to emphasize ML aspects that |
view as most forward-facing toward the  * systems that make decisions usually
requiring a human level of expertise,

possessing the qualities of intentionality,

next decade
intelligence and adaptability

Terminology




CERN'’s Large Hadron Collider (LHC)
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CERN's Large Hadron Collider (LHC) [

 Atthe LHC, counter-rotating proton . >
beams cross with a frequency of 40 MHz ~== :

R L

* The beams consist of ~2500 bunches of O(100 billion) protons
per bunch that are steered into one another

— Each pp collision produces of O(103) particles!

 These beams are squeezed to increase the collision rate and
therefore increase the chance of producing interesting but rare
physics for discovery science

— comes with a price: multiple pp interactions per bunch crossing (“pile-up”)
that can obscure the most interesting (hard scattering) physics



Standard Model Production Cross Section Measurements
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Standard Model Production Cross Section Measurements Status: November 2019
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LHC Schedule

LHC HL-LHC
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I Runll: <p> = 34
I 2018: <up> = 37
[ 2017: <u> = 38
[ 2016: <p> = 27
I 2015: <p> =13
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%

pe— Run./ Event /1 S:283171./ 142530805 /254

N

S NN\ 7 , leads to increase size and
—— N = — = complexity collision data

e — a serious challenge for detector

= S triggering and event reconstruction

= : in the experiments during HL-LHC
Collision-event recorded by the CMS detector during & .
high luminosity running of the LHC with <>~ 100 (<p>~200) running! 9




Typical LHC data flow

1 kHz
1 MB / event

100 kHz

L eeeees

40 MHz

High Level Trigger
O(100 TB/s)

99% of events rejected! - | . -
Offline Reconstruction @ Tier-0

Lots of human\ & artificial
intelligence steps) here!

Level 1 Trigger
99.75% of events rejected!
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Collisions Higgs 5iscovery! 10



Typical LHC data flow
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1 MB / event
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High Level Trigger
99% of events rejected!

40 MHz
O(100 TB/s)

Offlme Reconstructlon @ Tler-O

Lots of human\ & artificial
intelligence steps) here!

Level 1 Trigger
99.75% of events rejected!

99.9975% of collision events are rejected while
retaining those essential for our science!

\ - Must continually choose a winner out of
., - 40,000 (avg.) very wisely and must choose it

Collisions very fast! Higgs Discovery! 11
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LHC Science

data _ SKA Phase 1 -
200 PB 203

LHC - 2016
LSST I
50 PB raw data issT ) ~300 PB/year
/  science data

Google
Internet archive Yearly data volumes

~15 EB
HL-LHC - 2026

~600 PB Raw data

SKA Phase 2 — mid-2020’s HL-LHC - 2026
~1 EB science data ~1 EB Physics data




The HL-LHC Challenge
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ATLAS & CMS will record ~10 times as much data from ~100 times as many
collisions as were used to discover the Higgs boson (and at twice the energy).

The HL-LHC will produce exabytes of science data per year, with increased
complexity: an average of 200 overlapping pp collisions per event

Several large US software and computing projects have been initiated to help
address these challenges, including:

Institute for Research & Innovation in Software for HEP (IRIS-HEP)

* IRIS-HEP begin in September 2018 and resulted from a 2-year community-
wide effort involving 18 workshops and 8 position papers, most notably a
HEP Software Foundation Community White Paper and a Strateqic Plan.

HEP Center for Computational Excellence (HEP-CCE)

« A cross-cutting initiative to promote excellence in high performance
computing (HPC) including data-intensive applications, scientific
simulations, and data movement and storage.

Many HEP problems can be recast as ML problems = ML is rapidly playing a
key role in addressing HL-LHC challenges & enabling new science capabilities!



http://iris-hep.org/
https://link.springer.com/article/10.1007%2Fs41781-018-0018-8
https://inspirehep.net/record/1644096?ln=en
https://www.hepcce.org/

E.g. Event Classification

® Observation of electroweak single top quark
production in association with a Z boson and
a quark (pp—=>tZq) by the ATLAS Collaboration

Events /0.2

® Sensitive probe
of new physics
(e.g. FCNCs)

® Trained an artificial neural network (ANN) to
classify tZq events using simulated data for
improved signal and background separation
o ANN performance validated by studying
events with similar signatures (control regions)
that are dominated by background processes
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https://arxiv.org/abs/2002.07546

E.g. “Object” (t-quark) Classification

Comparison of many

|||||

O Image-based
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https://arxiv.org/pdf/1902.09914.pdf

E.g. ML-based Fast Shower Simulation I

ATLAS: Simulation is the largest use of distributed computing resources and ~80% of
that is calorimeter simulation Latentspace < (106m)

Two of the most promising ML-based =5 o | | o s |Bs
approaches studied thus far: QE ] &%E] 8" g3 63
Variational Autoencoder (VAE)
o : ATL-SOFT-PUB-2018-001
Encode r.epresentatlon of Geant4 S o015-000
showers into latent space SIM-2019-006

« Use decoder to generate new showers 53_"13\ SIM-2019-007

Latent space z

Generated
shower

Dense
128
LeakyRelLU
Dense
128
LeakyRelLU
Dense
128
LeakyRelLU
Dense
L1 reg., 266
Sigmoid

Generative Adversarial Networks (GAN) Y

Particle energy
Calo. config.

 Train a generator for new showers |

» Critic: Difference between generated - - - J
shower and Geant 4 e |8 8 S8 58— 253 ()]
i 52 272 270 2epl
« Second Critic for total shower energy < < <



https://cds.cern.ch/record/2630433
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-004/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-006/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-007

E.g. ML-based Fast Shower Simulation I

ATLAS: Simulation is the largest use of distributed computlng resources and ~80% of

that is calorimeter simulation

-
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Two of the most promising ML-based ¢

approaches studied thus far:

Variational Autoencoder (VAE)

* Encode representation of Geant4
showers into latent space 0
» Use decoder to generate new showers
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Generative Adversarial Networks (GAN)

 Train a generator for new showers

« Critic: Difference between generated
shower and Geant 4

« Second Critic for total shower energy
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E.g. NN Stability / Decorrelation I

® Goal: Stabilize discriminator against systematic uncertainty or other effect

® Adversarial training (e.g. decorrelate jet mass) st s
5 1
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E.g. Triggering with Autoencoders I

® \Without algorithmic or other (e.g. hardware) improvements, trigger requirements
become more restrictive at the HL-LHC to fit into computing constraints >
decreasing sensitivity to some beyond-the-SM (BSM) signatures

® Unsupervised learning can be used to train the trigger to identify BSM physics as

anomalies in the data stream ,
arXiv:1811.10276

AutoenCOder (AE) : low dimensional

representation

| "
3 ‘ Encoder - - Decoder - 3

Since the compression capability of an AE network
does not generalize well to other data, we can use
the loss (encoder-decoder distance) to identify events
not representative of the training data (i.e. anomalies)



https://arxiv.org/pdf/1811.10276.pdf

E.g. Triggering with Autoencoders I

® SM cocktail dataset as | ! |
collected with isolated 100 1k evts/month

single lepton trigger B SM val. Mix
J P 99 [ h%tt
1072 1 A-dl
[ h*>1v

® 21 input quantities: lepton
momentum, isolation,

charge, number of jets, ;—‘210_4' i) L0 .

missing transverse § Py _> 5 4x107¢ of the SM
energy, etc... — very g 10 events are retained
generic and intended to Lo

be BSM signal agnostic

® Triggered events could be 10-1°
written to a special = .
“anomaly” data stream for LOSSreco
additional analysis 29

arxiv.1811.10276




E.g. Tracking w/ Graph Neural Networks I

Data relationships in many real-world applications can be naturally o,
represented by graphs O
Graph Neural Networks (GNNs) are deep learning based methods that captﬁre
dependencies on graphs via message passing between the nodes of graphs

GNNs are well-suited to pattern recognition—a key element of reconstructing
charged particles in tracking detectors

Work on GNN approaches to tracking and calorimetry initiated by HEP.TrkX and is
being driven by the EXA.TrkX group (see their 2019 NeurlPS paper). Several
members of IRIS-HEP are collaborating on this effort

Detector measurements are represented as graph nodes which are associated with
one another by learned graph edges that represent the particle tracks

e ]

_ VY Output
— | Encoder > L 48
m Ho -E_’- H2 - Hy | Module

23



https://ml4physicalsciences.github.io/files/NeurIPS_ML4PS_2019_83.pdf

E.g. Tracking w/ Graph Neural Networks I

® \We use the TrackML Challenge
Data for training & evaluation

® Preprocessing for GNN models
use HEP.TrkX libraries with a

truth particle pt> 2 GeV cut

y (mm)

00000

uuuuu

validation loss
- training loss

log(Loss) vs.
Training Epoch

0 10

20 30 40 50

® GNN-based inference can
be implemented on FPGAs

to accelerate

computationally expensive
parts of the event
reconstruction such as
calorimetry and tracking in
the ATLAS or CMS High-

Level (software) trigger

24



E.g. Real-time ML-based Inference

Offline

’ reconstruction
High-Level Trigger @ Tier O

Level 1 trigger

Absorbs 100s TB/s Computing farm for detailed
Trigger decision to be made in O(us) analysis of the full event

Latencies require all-FPGA design Latency O(100 ms)

25



E.g. Real-time ML-based Inference

100 ms 1s

f

Vs=13 TeV, 2016

= 1 T T T L e T e e DT
£ - CMS Simulation Preliminary
'8 ,,AK‘4j,ets,,,pT,> 30 .GeV). ...

‘5_1 o |— CSVv2

= |— DeepCSV

R} :

e

-
o
N

102

O_HIII T T 11T T IIIHHI T rrrm

-

" b-jet efficiency

A~ YaYal -4 o - Yaolbilad -2 al - (- Y 4ielal

Deep neural network
based on high-level features

for b-quark jets identification
(offline & HLT)

Offline
reconstruction

@ Tier O

High-Level Trigger

Computing farm for detailed
analysis of the full event

Latency O(100 ms)

We are already applying
Deep Learning here!

40



E.g. Real-time ML-based Inference I

Level 1 trigger

Absorbs 100s TB/s
Trigger decision to be made in O(us)
Latencies require all-FPGA design

Can we do realtime Al in
O(ps) on one FPGA?®

27



E.g. Real-time ML-based Inference I

high level synthesis for machine learning

arxiv.1804.06913

Keras hisaml 3-layer pruned, Kintex Ultrascale
TenSOI‘HOW 50| —* Reuse Factor =1
PyTorch —=— Reuse Factor = 2

Co-processing kernel —=— Reuse Factor = 3

Y.
ooe —=— Reuse Factor = 4
/ " h IS 4 ml 40 —a Reuse Factor = 5 ~175 ns

—=— Reuse Factor = 6

compressed 20
conversion Custom firmware 10 AN
: : design DL algo inference in ~75 ns!
Usual machine learning

software workflow 86> <16.6> 246>  <32.6> <a0,6>

Fixed-point precision
tune conflgurahon
precision
reuse/pipeline )

Read our White Paper on how accelerated ML can be http:/fastmachinelearning.org
applied across many fields of fundamental physics!

28



http://fastmachinelearning.org/
https://fastmachinelearning.org/images/coproc_whitepaper_v0.pdf

E.g. Real-time ML-based Inference I

Workshop on Sept 10-11, 2019 @ Fermilab Workshop Webpage & Report

Hosted at the Fermilab LPC and co-located with the Fast I\sllach_ine IF.e_I?rning
FastML “developer bootcamp” which held tutorials and '
hackathon (195 registered participants!)

Accelerating ML in science:

Ultrafast on-detector inference
and real-time systems

¢ ’ /- I3 & o g
G ! Y f ! ! b5 WP £ Acceleration as-a-service
3 i 4 (9 I e 7 " e {’ﬁ" £ ?
s, 4 3 i B E A Hardware platforms
. ] oy T £ = az f, F ware p
: s ‘B P S 3
£ et /’; - ”—“ ‘e i3 £ é‘y Coprocessor technologies
‘ yoigel ol Bp | e } ¢ v e (CPU/GPU/TPU/FPGAS)
< > / 4 Y/ A ) £ ! ‘|‘ s q&
; Y \ Distributed learning

II’IS

Read our White Paper on how accelerated ML can be ccccccccccccc
applied across many fields of fundamental physics! = @15 e . v his 4 ml


https://indico.cern.ch/event/822126/
https://github.com/iris-hep/blueprint/blob/master/reports/2019/Fast-Machine-Learning-and-Inference/report.pdf
https://fastmachinelearning.org/images/coproc_whitepaper_v0.pdf

Fast Machine Learning and Inference
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Looking forward... I

Many HEP problems can be recast as ML problems ML is rapidly playing a key
role in addressing HL-LHC challenges & enabling new science capabilities

Some key areas of ML for HEP going forward as | see it (some topics were

covered in this talk, but many not):

O

O OO O0OO0OO0OO0OO0OO0OO0

Fast (accelerated, “real-time”) ML training and inference

Adversarial training, data augmentation

Supervised learning with raw detector information (“whole-event ML")
Unsupervised learning, anomaly detection

Weakly supervised learning (e.g. CWolLa, Tag ‘N Track)
Reinforcement learning

Deep Generative Models for Fast Detector Simulation
Uncertainty quantification

Graph-based learning

Training and Workforce development
Physics-irspired -driven network architectures




Bender: Come on, Fry. | really wanna see it
[the year 2000]. You know how | yearn for a
simpler time... a time of barn dances and buggy

rides before life was cheapened by heartless,

high-tech machines.

CMS Experiment at the LHC, GERN

' % Data recorded; 2016-Oct-14 09:56:16,738952 GMT
é Run./ Event /LS;283171./ 1425308054254\
S N N\ , A
S & \\\\\\\\\\_ X ! 7 g 2 ;/ Z /////
—_— \ \\ N \;\‘\k\ 1; ';;({,% //// ——"
“TE -0 O ¢ N b X
3 Leela: But, Bender, you are a—
= Bender: [dismissive] blah blah blah blah ...

Collision.event recorded by the  CMS detector during A I h a n kS !

high luminosity running of the LHC with <p> ~ 100



