
Christopher Jones
JLab Software and Computing Round Table
10 March 2020

Lessons Learned from CMS Framework Development



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

Introduction

• These ‘lessons’ are my own opinion, not necessarily those of CMS 
management

• Will cover the following areas
• CMS’s problem domain
• Framework structure
• Multi-threading
• Job configuration
• Miscellaneous

2



3/10/2020 C Jones I Lessons Learned from CMS Framework Development3

Problem Domain



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

Know Your Problem Domain

• The lessons here are based on what CMS needs
• Other experiments will often have different needs

4



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

CMS Problem Domain

• Have billions of statistically independent Events to process
• Events give perfect parallelization
• More interested in time it takes to process all Events rather than time it takes to process 

one Event
• CMS cares more about Event throughput rather than latency

• Algorithms used to process Events have limited concurrency
• Concurrency scales better between Events compared to within an Event

• Constrained on memory per CPU core
• Running N single-threaded jobs on N cores often exceeds memory of a node
• Lots of memory in a job can be shared across events
• Memory exclusively needed to process event is less than memory per core
• Having multiple Events processing concurrently sharing memory is sufficient for memory 

constraint
• High concurrency within an Event has not been needed

5



3/10/2020 C Jones I Lessons Learned from CMS Framework Development6

Structure



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

+ Encapsulate Algorithms into Modules

• Frameworks have done this for 30 years
• still a good idea

• Break computations into ‘small’ algorithms -> Modules
• Modules only communicate via data products
• Framework responsible for 
• scheduling when a Module runs and 
• manages access and lifetime of data products

• CMS uses ~1800 Module instances in reconstruction job
• CMS has ~ 4000 separate Module C++ classes

7



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

+ Macro Data Processing Data Model

• CMS breaks its ‘Processing’ data into a hierarchy
• These concepts directly match how data is taken in the experiment

• Run
• A time period defined by online data taking
• Contains LuminosityBlocks

• LuminosityBlock
• 23 second time period during data taking
• Contains Events
• Atomic unit of processing
• Guarantee that all or none of the Events in a LuminosityBlock are processed in a job

• Event
• Triggered beam crossing during data taking

• Modules can get callbacks when Run, LuminosityBlock or Event changes

8



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

+ Micro Data Processing Data Model

• Data products are stored in either Run, LuminosityBlock or Event
• Any C++ type can be used

• Data product retrieval done in a type safe manner
• Same API used for Run, LuminosityBlock and Event

• Trivial to match which data products came from which Modules
• Retrieval requires using the unique string label assigned to the producing Module

9



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

+ Unified Conditions/Geometry System

• Based on Interval of Validity (IoV)
• Range of Runs, LuminosityBlocks or Events for which the conditions are valid

• Data Model
• Conditions with same IoV are placed in the same Record
• A Record can hold any C++ data type

• Modules are used to update conditions when IoVs change
• Modules are allow to depend upon conditions from other Modules

• Framework manages lifetime of conditions
• Modules always get proper conditions for given Run, LuminosityBlock or Event transition

• See 
• https://indico.cern.ch/event/408139/contributions/979797/attachments/815718/1117725/

10

https://indico.cern.ch/event/408139/contributions/979797/attachments/815718/1117725/EventSetup.pdf


3/10/2020 C Jones I Lessons Learned from CMS Framework Development

- Different Data Processing and Conditions Data Models

• The CLEO e+e- experiment framework used a unified data model
• Runs, LuminosityBlocks and Events were just types of Records

• By learning 1 data model you could do any kind of processing
• Calibration and analysis used exact same ideas

• See
• https://www.classe.cornell.edu/~cdj/publications/conferences/CHEP98/DataAccess.pdf

11

https://www.classe.cornell.edu/~cdj/publications/conferences/CHEP98/DataAccess.pdf


3/10/2020 C Jones I Lessons Learned from CMS Framework Development12

Multi-Threading



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

+ Use Multi-threading Instead of Multi-process

• A single CMS process can need more memory than the average mem/core
• Initially CMS tried forking process
• Copy On Write from Unix allowed sharing of unchanging memory across processes
• Found consolidating results from multiple processes very difficult
• Load balancing across processes was not trivial

• CMS very happy with results we get with our fully threaded framework
• Use Intel’s Threading Building Blocks (TBB) library to do scheduling of work on threads
• The TBB task model is a very good fit for CMS’s framework

• See
• https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012034
• https://cds.cern.ch/record/2297463/files/pdf.pdf

13

https://iopscience.iop.org/article/10.1088/1742-6596/608/1/012034
https://cds.cern.ch/record/2297463/files/pdf.pdf


3/10/2020 C Jones I Lessons Learned from CMS Framework Development

+ Avoid Singletons

• Singletons are globally accessible stageful objects in a program

• Singletons cause hidden dependencies between Modules
• Makes it difficult to properly schedule run order of Modules

• Singletons make thread-safety more difficult
• One thread could be updating the value while another is reading it

• Singletons impose a single instance even if logically there could be multiple
• E.g. If a singleton was used to deliver a calibration then could not have concurrent 

processing across a calibration change

• Handled by CMS’s policy of Modules only communicating via data products

14



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

+ Data Products/Conditions are Immutable

• Modules only communicate via data products/conditions
• Once published by a Module the data products/conditions are not allowed to change

• Provenance of the data product/conditions easy to understand
• Just care about where it was produced, not where it was read

• Easier to understand debugging of problems

• Easier to make thread safe
• const thread-safety is supported by C++ standard

15



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

- Avoid User Written Caches in Modules

• Avoid using member data as temporary state
• Often seen when member data used rather than a calling argument of a member 

function
• Prohibits using a Module instances concurrently by multiple events

• Avoid using member data to cache IoV based information
• E.g. on each Run update an algorithm specific structure
• These hinder concurrent IoV processing
• Better to have framework do caching
• Could be part of conditions system
• Module API could offer customizable caching internal to Module

16



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

- Limit Synchronization Points

• Events are perfectly parallelizable

• Any arbitrary segregation of events can lead to synchronization
• E.g. a Module assuming only 1 Run being processed at a time
• Could not process Events from different Runs concurrently
• CMS’s Module API for single threaded framework assumed
• Gave callbacks on begin and end of Files, Runs and LuminosityBlocks
• Implied only 1 file, Run and LuminosityBlock being processed at a time

• Made threaded migration harder

17



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

+ Avoid Blocking Threads

• Using mutex for long running algorithms limits thread scaling

• Better to allow framework to schedule Modules which can not run at same 
time
• Tell framework about Modules using a shared resource
• E.g. 2 Modules using same thread unsafe 3rd party library

18



3/10/2020 C Jones I Lessons Learned from CMS Framework Development19

Job Configuration



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

+ Use Standard Scripting Language for Configuration

• CMS originally (2005) had a custom configuration language
• Hard for users to get documentation
• Was not very good at allowing extension/modification of an existing configuration

• CMS switched to using python for job configuration in 2007

20



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

- Validate Configuration Options

• The names and types of configuration information are not validated in CMS
• If set incorrectly, either ignored or leads to runtime failure
• Have to look at C++ code to find what configuration info is required for each Module
• CMS has optional validation
• Requires additional user written code
• If written, does provide documentation in addition to validation

• In hindsight, wished we had required validation

21



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

- Require Module Data Dependencies Specified in Configuration

• CMS requires Modules to register in their constructor
• What data products they produce
• What data products they consume
• What is consumed can optionally be obtained from the configuration
• Makes it difficult to modify an existing configuration to change data dependencies

• Would be better to always require consumes come from configuration

22



3/10/2020 C Jones I Lessons Learned from CMS Framework Development23

Miscellaneous



3/10/2020 C Jones I Lessons Learned from CMS Framework Development

- Better Integration with others Tools

• CMS physicists typically want to do analysis outside of the CMS framework

• CMS standard file format
• Is readable from a ROOT executable with the addition of a few libraries for dictionaries
• CMS also has a nano data format which is usable from ROOT directly

• Python is often used to write analysis scripts
• PyROOT is often used to read the data

• Framework Modules cannot easily be used outside of the Framework
• Have had numerous requests to use some from python

24



3/10/2020 C Jones I Lessons Learned from CMS Framework Development25

Questions?


