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• Replace Spacetime with a 4-Dimentional Lattice

• Quark fields on the lattice sites: spinors (either 
complex 3-vectors, or 4x3 “vectors”)

• Strong Force Gauge fields on links: 3x3 complex 
matrices

• Interactions are typically local
- closed loops (3-matrix x 3-matrix)

- covariant stencils (3-matrix x 3-vector )

• Also lattice wide summations:
- global sums, inner products etc.

• Extremely well suited to data-parallel approaches
- complex numbers and factors of 3 are often unfriendly to 

automatic vectorization - we need to usually build that in.

LQCD as an application

a
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Typical LQCD Workflow

Propagators, graph nodes & edges 
eigenvectors etc. 

- Linear Solves for quark propagators on sources 
- e.g. O(1M) solves/config for spectroscopy 
- Solver: same matrix, many right hand sides 
- Throughput limited  
- Ensemble: Many small jobs

Graph Contractions 
- O(10K)-O(100K) diagrams  
- sub-diagram reuse challenge 
- main operation is batched 

ZGEMM 
- Potential large scale I/O challenge 
- Ensemble: Many single node jobs

Correlation 
Function  

Fitting and Analysis 
- workstations

D. J. Wilson et. al. PRD 91, 054008 (2015)

…

…

Configuration Generation 
- Hybrid Molecular Dynamics Monte Carlo 
- Linear Solves for Fermion Forces 
- Data parallel code for non-solver parts 
- Strong Scaling Limited 
- ‘Large’ long running jobs

D. J. Wilson et. al. PRD 91, 054008 (2015)
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FIG. 2. Eigenvalues of Eq. 3, �n(t), in the isospin–1/2 case ~P = [001], ⇤ = A1 on the 243 lattice. Plotted as eEn(t�t0)�n(t) are

the data points and a timeslice-correlated fit of the form �n(t) = (1 � An)e
�En(t�t0) + Ane

�E0
n(t�t0). The set of 27 operators

used in the variational basis is listed beneath the plot.

ing near-degenerate states, with statistical precision on
the energy values at or below 1%.

The matrix elements
⌦
n
��O†

i (0)
��0
↵
are also well deter-

mined in the solution of Eq. 3, and their relative size
can give us some insight into the make-up of the states
in our excited spectrum. As an example, we show in Fig-
ure 3, the spectrum and relative overlap matrix-elements
(normalized as in [31]) of the lowest 15 states in the
[011]A1 (243) channel extracted from a 27–dimensional
correlation matrix. In the main we observe a separation
between states with significant overlap onto ⇡K oper-
ators from those with overlap onto ⌘K operators. This
likely reflects the relatively small breaking of SU(3) flavor
symmetry in our calculation with m⇡ = 391MeV, mK =
549MeV, m⌘ = 589MeV. With SU(3) flavor symmetry,
the J = 0, 2 . . . channels have much reduced coupling to
⌘K compared to ⇡K [3, 48]. On the other hand, the
J = 1, 3 . . . channels have equal coupling to ⇡K, ⌘K,
but since the first vector resonances above ⌘K threshold
likely lie o↵ the top of the scale we have presented, we
are unlikely to see this coupling manifested. The origin
of these SU(3) flavor arguments is presented in Appendix
A.

If QCD were such that hadrons had no residual in-
teractions, our “meson-meson” operator basis would be

diagonal, with for example an operator ⇡n2
⇡
Kn2

K
produc-

ing an eigenstate of energy E
n.i.
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. If

states appear in the spectrum that di↵er from these en-
ergies, there is some indication of interactions, including
the possibility of resonances.
The presence in Fig. 3 of a state below ⇡K thresh-

old, significantly below the first non-interacting ⇡K level,
and which has strong overlap onto “single-meson” oper-
ators, likely suggests a J = 1 K

? state that is either
bound, or barely above threshold. Above ⇡K thresh-
old we observe several states displaced somewhat from
non-interacting ⇡K positions, which show some degree
of overlap onto both ⇡K-like constructions and “single-
meson” operators. Above the ⌘K threshold, we observe
states with strong overlap onto ⌘K-like constructions ly-
ing quite close to non-interacting ⌘K positions. High
in the spectrum, above ⇡⇡K threshold2 a state is ob-
served having strong overlap onto “single-meson” opera-
tors which in the rest frame would overlap with J = 2.

2 but recall that we are not including ⇡⇡K-like operators in the
basis
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• Level structure worked out over last 4 
iterations of the SciDAC program

• Data Parallel Layer (QDP) over a 
communications abstraction layer, 
presents programmer with a ‘virtual 
grid machine’

• Applications can be written on top of 
the Data Parallel Layer, calling out to 
Highly Optimized Libraries as 
needed.

• Grid is a new code, also providing a 
data parallel layer, and similar 
layering internally (but not broken out 
into separate packages)

Apps

Libraries

QMP

QDP++/QDP-JIT/QDP-C

QUDA

Chroma CPS MILC 

Grid

MPI/Other Comms

Data Parallel

Comms

MGProto & 
QPhiX

General Software Organization
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• Level structure worked out over last 4 
years of SciDAC

• Data Parallel Layer (QDP) over a 
communications abstraction layer, 
presents programmer with a ‘virtual 
grid machine’

• Applications written on top of the 
Data Parallel Layer, calling out to 
Highly Optimized Libraries as 
needed.

• Grid is a new code, also providing a 
data parallel layer, and similar 
layering internally (but not broken out 
into separate packages)

Apps

Libraries

QMP

QDP++/QDP-JIT/QDP-C

QUDA

Chroma CPS MILC 

Grid

MPI/Other Comms

Data Parallel

Comms

MGProto & 
QPhiX

General Software Organization

Key Goals: 
Port Data Parallel Layer, 

Port Libraries, 
Aim for Performance  

Portability
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Exascale & Pre-Exascale Systems
• Perlmutter (formerly NERSC-9)

- AMD CPUs, NVIDIA Next Gen GPUs.

- Slingshot fabric from Cray

• Aurora 
- Xeon CPUs + Intel Xe Accelerators

- Slingshot fabric from Cray

• Frontier
- AMD CPUs + AMD Radeon GPUs

- Slingshot fabric from Cray

• MPI + X programming model

• Horsepower for all the systems will come from accelerators

• But the accelerators are different between the 3 systems 
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Node Programming Model Options
Support OpenMP Offload Kokkos/Raja DPC++/SYCL HIP C++ pSTL CUDA

NVIDIA GPU

AMD GPU

Intel Xe

CPUs

Fortran

FPGAs

Comments Compilers Maturing, 
some C++ issues

DPC++ and HIP back 
ends in development

NVIDIA via POCL or 
Codeplay Backend, AMD 
via hipSYCL for now, well 

supported for Intel 

Fortran via cross 
calling, well 

supported for AMD 
GPUs

The way of the future? 
parallelism in the base 

language. Tech 
previews just now

Fortran via PGI CUDA 
Fortran, well 

supported for NVIDIA 
GPUs

Supported In development 
or aspirational

Can be made to work 
via 3rd party extension 

or product or hack
Not supported

Disclaimer: this is my current view, products and support levels can change. This picture may become out of date very soon
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OpenMP Offload
• Offloaded axpy in OpenMP
#pragma omp target teams distribute parallel for simd 
   map(to:z[:N]) map(a,x[:N],y[:N])
for(int i=0; i < N; i++) // N is large
{
   z[i] = a*x[i] + b[i];
}

• Collapses: 

- omp target - target the accelerator, 

- omp teams - create a league of teams 

- omp distribute - distribute the works amongst the teams

- omp parallel for simd - perform a SIMD-ized parallel for 

- map a, x and y to the accelerator and map resulting z back out (data movement).
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HIP
• HIP is AMD’s “C++ Heterogeneous-Compute 

Interface for Portability”

• Take your CUDA API and replace ‘cuda’ with ‘hip’:
- cudaMemcpy() -> hipMemcpy()

- kernel<<>>( ) -> hipLaunchKernelGGL(kernel,…)

- and other slight changes.

- You can use hipify tool to do first pass of conversion 
automatically

• Open Source

• Portability between NVIDIA and AMD GPUs only. 
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Kokkos

• View - multi-dimensional array, index order specified by Layout, location by 
MemorySpace policy. Layout allows appropriate memory access for CPU/GPU

• Parallel for dispatches a C++ lambda 

• Kokkos developers on C++ standards committee - work to fold features into C++

Kokkos::View<float[N],LayoutLeft,CudaSpace> x(“x”); // N is large
Kokkos::View<float[N],LayoutLeft,CudaSpace> y(“y”);
Kokkos::View<float[N],LayoutLeft,CudaSpace> z(“z”);

float a=0.5;

Kokkos::parallel_for(“zaxpy", N, KOKKOS_LAMBDA (const int& i) {
  z(i) = a*x(i) + y(i);   // view provides indexing operator()
});
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Portability via Kokkos
• Kokkos provides portability via back-

ends: e.g. OpenMP, CUDA, …

• Most abstractions are provided in a 
C++ Header library
- parallel_for, reduction, scans

• Kokkos provides the Kokkos View 
data-type
- user can customize index order

- explicit memory movement only

- select memory space via policy

• Bind Execution to Execution Space
- select back end via policy

Kokkos Abstractions

CUDA
Back-End

OpenMP
Back-End

OpenMP
target 

Back-End

HIP 
Back-End

SYCL/
DPCPP

Back-End

Stable and  
Production ready In Development
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sycl::queue myQueue;
sycl::buffer<float,1> x_buf(LARGE_N); 
sycl::buffer<float,1> y_buf(LARGE_N);
sycl::buffer<float,1> z_buf(LARGE_N);

// … fill buffers somehow …
float a = 0.5;
{
  myQueue.submit([&](handler& cgh) {
    auto x=x_buf.getAccess<access::mode::read>(cgh);
    auto y=y_buf.getAccess<access::mode::read>(cgh);
    auto z=z_buf.getAccess<access::mode::write>(cgh);

    cgh.parallel_for<class zaxpy>(LARGE_N,[=](id<1> id){
      auto i = id[0];
      z[i]=a*x[i] + y[i];
    });
  });
}

SYCL
• SYCL manages 

buffers 

• Only access buffers 
via accessors

• can track accessor 
use and build data 
dependency graph to 
automate data 
movement

• What does this mean 
for non SyCL 
Libraries with 
pointers? (e.g. MPI)

SYCL runtime 
manages data in 

buffers
access buffer data  
via accessors in 
command group  

(cgh) scope or host 
accessor

kernels must have a 
unique name in C++
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sycl::queue myQueue;
sycl::device dev=myQueue.get_device(); 
sycl::context con=myQueue.get_context();

float* x=sycl::malloc_device(LARGE_N*sizeof(float),dev,con); 
float* y=sycl::malloc_device(LARGE_N*sizeof(float),dev,con);
float* z=sycl::malloc_device(LARGE_N*sizeof(float),dev,con);

// … fill aarrays somehow  somehow …
float a = 0.5;
{
  myQueue.submit([&](handler& cgh) {
   cgh.parallel_for(LARGE_N,[=](id<1> id){
      auto i = id[0];
      z[i]=a*x[i] + y[i];
   });
  });
}
// free pointers etc..

USM gives host/
device pointers 

and

Unnamed lambda extension

Intel OneAPI DPC++ extensions
• USM extension allows 

management of arrays via 
pointers (more CUDA-like)

• Memcpy ops to move data 
between host and device 
(not shown here)

• Reductions !!

• Unnamed Lambda extension 
obviates need for a class 
name for parallel for

• Libraries (e.g. MPI) can do 
intelligent things with USM 
pointers (e.g. direct device 
access)

• Subgroup Extension allows 
more explicit SIMD-ization



Portability via SYCL
Intel LLVM

OneAPI/DPCPP
Codeplay 

ComputeCPP
HIP-SYCL

SPIR/SPIRV

HD 
Graphics FPGA

Intel OpenCL Drivers POCL Driver

Xeon
Server

NVIDIA
GPU

PTX

AMD
GPU

CUDA
driver

ROCm
driver

HIP

Other 
CPU

SPIR/SPIRV

?

Consistency 
in implementing 

standard (?)

Manufacturers  
all have favorite 

standards 

Codeplay
Backend

NEW!



Thomas Jefferson National Accelerator Facility

US LQCD Codes are C++/C
• For C/C++ codes, OpenMP offload, Kokkos/Raja, or DPC++ and SYCL are the 

most obvious candidates currently. pSTL may become interesting in the near future

• Performance Portability Experiments:
- OpenMP Offload: P. A.Boyle, K. Clark, C. DeTar, M. Lin, V. Rana, A. V. Aviles-Castro, 

“Performance Portability Strategies for Grid C++ expression templates” arxiv:1710.09409

- OpenMP Offload:  P. Steinbrecher and HotQCD - OpenMP implementation for Intel Gen9

- Kokkos and SYCL: B. Joo, P3HPC @ SC19

- Early pSTL experiments by K. Clark

• The lattice developer community is paying attention to DPC++/SYCL, HIP, and 
OpenMP offload as the porting work to the new machines becomes more urgent.

• I will focus on our local work with the Chroma code and Kokkos and SYCL 
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Wilson Dslash in Kokkos and SYCL
• When looking at a new programming model, 

it helps to have a “simple” mini-app to 
evaluate whether the model is viable

• We chose the Wilson-Dslash operator as it is 
- sufficiently nontrivial.

- well understood in terms of performance 

- has many hand optimized implementations, e.g. 
QPhiX on KNL, QUDA on NVIDIA GPUs

• Initial work in Kokkos looked at vectorization

• More recently we looked at porting to SYCL, 
and seeing how portable SYCL is

t

t-1

t+1

y
z

t
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Basic Performance Bound for Dslash
• R = no of reused input spinors

• Br = read bandwidth

• Bw = write bandwidth

• G = size of Gauge Link matrix (bytes)

• S = size of Spinor (bytes)

• r = 1 (read-for-write), =0 (no read-for-write)

• Simplify: Assume Br = Bw = B

F =
1320

8G/Br + (8�R+ r)S/Br + S/Bw

R=0 R=1 R=2 R=3 R=4 R=5 R=6 R=7
r=0 0.92 0.98 1.06 1.15 1.25 1.38 1.53 1.72
r=1 0.86 0.92 0.98 1.06 1.15 .1.25 1.38 1.53

AI =
1320

8G+ (9�R+ r)S

Wilson Dslash Arithmetic Intensities (F/B) for 32-bit floating point numbers (G=72B, S=96B)



Vectorizing Dslash for Single RHS

Vector Unit of Length N
log2N dimensional

virtual node (VN) grid

Lay-out lattice over 
virtual node grid

Ascribe corresponding sites
from virt. node grid into

vector lanes

Virtual Node Vectorization  
(P. Boyle, e.g. in Grid, BFM)

e.g. arXiv:1512.03487[hep-lat]

• Treat  SIMD lanes like a grid of virtual computing 
elements (virtual nodes, VNs)

• Lay-out lattice onto VN grid 
- original site -> ( ‘outer’ site, lane )

• All arithmetic changes to straightforward SIMD arithmetic

• Accessing nearest neighbors
- on edge of `outer lattice` communicate between ‘virtual 

nodes’ (lanes). 

- this is a shuffle operations (e.g. _mm512_shuffle_ps in 
AVX512 )

• On GPUs 
- use N=1 (no vectorization) => trivial shuffles.     ✅

- Or use warp/subgroup level SIMD (less portable)    𐄂
outer
grid

outer grid
lanes



Kokkos Implementation: Kernel
template<typename VN, typename GT, typename ST, typename TGT, typename TST, const int isign, const int target_cb> 
struct VDslashFunctor {  

VSpinorView<ST,VN> s_in; 
VGaugeView<GT,VN> g_in; 
VSpinorView<ST,VN> s_out; 
SiteTable<VN> neigh_table; 

KOKKOS_FORCEINLINE_FUNCTION 
 void operator()(const int& xcb, const int& y, const int& z, const int& t) const 
 { 
   int site = neigh_table.coords_to_idx(xcb,y,z,t); 
    int n_idx; 

   typename VN::MaskType mask; 
SpinorSiteView<TST> res_sum ; 
HalfSpinorSiteView<TST> proj_res , mult_proj_res; 

   for(int spin=0; spin < 4; ++spin   
     for(int color=0; color < 3; ++color) 
        ComplexZero(res_sum(color,spin)); 
  
   neigh_table.NeighborTMinus(xcb,y,z,t,n_idx,mask);                          // Get neighbor and permutation mask 
   KokkosProjectDir3Perm<ST,VN,TST,isign>(s_in, proj_res,n_idx,mask);         // spin project 
   mult_adj_u_halfspinor<GT,VN,TST,0>(g_in, proj_res,mult_proj_res,site);     // matrix multiply (neighbor matrix permuted already) 
   KokkosRecons23Dir3<TST,VN,isign>(mult_proj_res,res_sum);                   // reconstruct 

   // Other dirs. (Z-, Y-, X-, X+, Y+, Z+, T+ 
   #pragma unroll 
   for(int spin=0; spin < 4; ++spin)  
     for(int color=0; color < 3; ++color) { 
        Stream(s_out(site,spin,color),res_sum(color,spin)); 
  }}; 

Neighbouring site 

Vectorisation Permutation mask: for edges 

operator() gets 4 indices from the multi 
dimensional range policy 



Kokkos Implementation: Dispatch
template<typename VN, typename GT, typename ST,  typename TGT, typename TST> 
class KokkosVDslash { 
public: 
  const LatticeInfo& _info; 
  SiteTable<VN> _neigh_table; 

  KokkosVDslash(const LatticeInfo& info) : _info(info), 
    _neigh_table(info.GetCBLatticeDimensions()[0],info.GetCBLatticeDimensions()[1],info.GetCBLatticeDimensions()[2],info.GetCBLatticeDimensions()[3]) {} 

  void operator()(const KokkosCBFineVSpinor<ST,VN,4>& fine_in, const KokkosCBFineVGaugeFieldDoubleCopy<GT,VN>& gauge_in, 
                  KokkosCBFineVSpinor<ST,VN,4>& fine_out, int plus_minus, const IndexArray& blocks) const 
  { 
  int source_cb = fine_in.GetCB(); 
  int target_cb = (source_cb == EVEN) ? ODD : EVEN; 

     
  const VSpinorView<ST,VN>& s_in = fine_in.GetData(); 
  const VGaugeView<GT,VN>& g_in = gauge_in.GetData(); 
 VSpinorView<ST,VN>& s_out = fine_out.GetData(); 

     
  IndexArray cb_latdims = _info.GetCBLatticeDimensions(); 

    MDPolicy policy({0,0,0,0}, {cb_latdims[0],cb_latdims[1],cb_latdims[2],cb_latdims[3]}, {blocks[0],blocks[1],blocks[2],blocks[3]}); 
     
    if( plus_minus == 1 ) { 
      if (target_cb == 0 ) { 
        VDslashFunctor<VN,GT,ST,TGT,TST,1,0> f = {s_in, g_in, s_out, _neigh_table}; // Instantiate functor: set fields 
        Kokkos::parallel_for(policy, f);                                            // Dispatch 
      } 
      else { 
       … 
      }    }}}; 

4D Blocked Lattice Traversal Dispatch



SYCL Kernel Dispatch
template<typename VN, typename GT, typename ST, int dir, int cb>. class dslash_loop;   // Just to give SyCL Kernel a name; Yuck! 

template<typename VN, typename GT, typename ST> 
class SyCLVDslash { 
  const LatticeInfo& _info; 
  SiteTable _neigh_table; 
public: 
  SyCLVDslash(const LatticeInfo& info) : _info(info), 
 _neigh_table(info.GetCBLatticeDimensions()[0],info.GetCBLatticeDimensions()[1],info.GetCBLatticeDimensions()[2],info.GetCBLatticeDimensions()
[3]) {} 

  void operator()(const SyCLCBFineVSpinor<ST,VN,4>& fine_in, const SyCLCBFineVGaugeFieldDoubleCopy<GT,VN>& gauge_in, 
                        SyCLCBFineVSpinor<ST,VN,4>& fine_out, int plus_minus) 

  { 
      int source_cb = fine_in.GetCB();  int target_cb = (source_cb == EVEN) ? ODD : EVEN; 
      SyCLVSpinorView<ST,VN> s_in = fine_in.GetData(); 
      SyCLVGaugeView<GT,VN> g_in = gauge_in.GetData(); 
      SyCLVSpinorView<ST,VN> s_out = fine_out.GetData(); 
      IndexArray cb_latdims = _info.GetCBLatticeDimensions(); 
      int num_sites = fine_in.GetInfo().GetNumCBSites(); 

      cl::sycl::queue q; 
      if( plus_minus == 1 ) { 
        if (target_cb == 0 ) { 
          q.submit( [&](cl::sycl::handler& cgh) { 
   VDslashFunctor<VN,GT,ST,1,0> f{ 
                      s_in.template get_access<cl::sycl::access::mode::read>(cgh), 
                      g_in.template get_access<cl::sycl::access::mode::read>(cgh), 
                      s_out.template get_access<cl::sycl::access::mode::write>(cgh), 
                      _neigh_table.template get_access<cl::sycl::access::mode::read>(cgh) 
               };                                                                                    // Setup Functor 

               cgh.parallel_for<dslash_loop<VN,GT,ST,1,0>>(cl::sycl::range<1>(num_sites), f);        
           }); 
        } 
        else { 

Ugly: Need a ‘typename’ for dispatches, unless 
you have Intel -funnamed-lambda extension

Get Views our of user data types

Pass ViewAccessors to functor

1D Dispatch for now



template<typename VN, typename GT, typename ST, int dir, int cb>. class dslash_loop;   // Just to give SyCL Kernel a name; Yuck! 

template<typename VN, typename GT, typename ST> 
class SyCLVDslash { 
  const LatticeInfo& _info; 
  SiteTable _neigh_table; 
public: 
  SyCLVDslash(const LatticeInfo& info) : _info(info), 
 _neigh_table(info.GetCBLatticeDimensions()[0],info.GetCBLatticeDimensions()[1],info.GetCBLatticeDimensions()[2],info.GetCBLatticeDimensions()
[3]) {} 

  void operator()(const SyCLCBFineVSpinor<ST,VN,4>& fine_in, const SyCLCBFineVGaugeFieldDoubleCopy<GT,VN>& gauge_in, 
                        SyCLCBFineVSpinor<ST,VN,4>& fine_out, int plus_minus) 

  { 
      int source_cb = fine_in.GetCB();  int target_cb = (source_cb == EVEN) ? ODD : EVEN; 
      SyCLVSpinorView<ST,VN> s_in = fine_in.GetData(); 
      SyCLVGaugeView<GT,VN> g_in = gauge_in.GetData(); 
      SyCLVSpinorView<ST,VN> s_out = fine_out.GetData(); 
      IndexArray cb_latdims = _info.GetCBLatticeDimensions(); 
      int num_sites = fine_in.GetInfo().GetNumCBSites(); 

      cl::sycl::queue q; 
      if( plus_minus == 1 ) { 
        if (target_cb == 0 ) { 
          q.submit( [&](cl::sycl::handler& cgh) { 
   VDslashFunctor<VN,GT,ST,1,0> f{ 
                      s_in.template get_access<cl::sycl::access::mode::read>(cgh), 
                      g_in.template get_access<cl::sycl::access::mode::read>(cgh), 
                      s_out.template get_access<cl::sycl::access::mode::write>(cgh), 
                      _neigh_table.template get_access<cl::sycl::access::mode::read>(cgh) 
               };                                                                                    // Setup Functor 

               cgh.parallel_for<dslash_loop<VN,GT,ST,1,0>>(cl::sycl::range<1>(num_sites), f);        // Dispatch (1D for now) 
           }); 
        } 
        else { 

Ugly: Need a ‘typename’ for dispatches, unless 
you have Intel -funnamed-lambda extension

Get Views our of user data types

Pass ViewAccessors to functor

Future: instead of accessors use 
USM pointers, or Views implemented 

using USM pointers 

SYCL Kernel DispatchSYCL Kernel Dispatch



Experiments & Standard Candles
• We measured the performance of Kokkos & SYCL Dslash kernels on 

- Volta V100 GPUs. using Cori GPU system at NERSC

- Skylake CPUs (single socket) using the CPUs on Cori GPU system at NERSC

- KNL Systems using Jefferson Lab 18p cluster nodes

- Gen9 GPU using an Intel NUC System

• Performance ‘Standard Candles’
- On GPU:  Dslash from QUDA Library, with equivalent compression/precision options   

• Highly optimized QCD library for GPUs, M. A. Clark et. al. Comput Phys. Commun. 181, 1517 (2010) 
[arXiv:0911.3191 [hep-lat],  Download via: http://lattice.github.io/quda/

- On CPU/KNL: Dslash from QPhiX Library with equivalend compression/precision options

• Joo et. al. Kunkel J.M., Ludwig T., Meuer H.W. (eds) Supercomputing. ISC 2013. Lecture Notes in 
Computer Science, vol 7905. Springer, Berlin, Heidelberg, https://github.com/jeffersonlab/qphix

• To use SYCL on KNL and GPUs we used POCL v1.8: http://portablecl.org/

http://lattice.github.io/quda/
https://github.com/jeffersonlab/qphix
http://portablecl.org/
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SYCL on Intel HD Graphics

• Gen-9 GPU in a NUC (max DRAM bandwidth ~ 38 GB/sec,  lattice had 324 sites

• Used Codeplay Community Edition (1.0.4 Ubuntu) and Intel Public LLVM-based SYCL Compiler (version in the paper).

• Fortran like complex: (RIRIRI…), Vector Like complex: (RRRR…IIII…).
-  since V=1 these are the same layout but different operations

• Best performance: sustain 32-36 GB/sec, ~45 GFLOPS => AI ~ 1.25 => R=4-5.
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Combined Single RHS Results
• Kokkos using the virtual node SIMD 

with a ‘Vector Type’ seems to work well 
- ‘Vectype’ is AVX512 or our complex type 

based on float2

- Kokkos::complex with ‘alignas’ keyword 
works as well as float2

• SYCL + POCL did well on GPUs (had 
linear lattice traversal, if we 
implemented 4D it may be on par with 
Kokkos & QUDA - future work)

• Kokkos without Vectype did not do well 
on KNL - we anticipate the compiler 
doesn’t do well with SIMD-izing 
complex operations(?)
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LLVM: The Swiss Army Knife
• LLVM is compiler technology which underlies the 

implementations of current programming models:
- Intel DPC++, HIPCC/HCC, NVCC, …

• Key concepts are
- a front end: e.g. Clang for C++

- an intermediate representation (IR)

- back ends: NVPTX,AMDGPU,X86,Power,Arm etc.

• LLVM also includes Just-In-Time Compilers
- compile functions/kernels at run-time

- powering high level languages like Julia 

• LLVM can be used to write portable and efficient Domain 
Specific Languages (DSLs). 

C++ code Clang (front end)

LLVM IR

Optimization passesLLVM IR

Back End

.o PTX SPIRVGCN

dlopen() CUDA  
driver

OpenCL 
driver

ROCm 
driver

X86 
PowerPC NVPTX amdgpu

LLVMSPIRV
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QDP-JIT, QDP++ as a DSL
• QDP-JIT  developed by F. Winter at JLab allowed us to 

move all of the QDP++ data parallel layer to GPUs.
- Expression Templates (ET) generated CUDA PTX kernels

- PTX Kernels were launched by CUDA driver

- Automated Memory movement between host/device (via 
software cache)

- Provided data layout flexibility

• Later, PTX generation moved to LLVM libraries 
- turns QDP-JIT into a DSL for QCD

• CPU version was developed to target x86/KNL
- No ‘driver’, LLVM JIT-ed to objects (LLVM Modules)

- Vector friendly layout was supported (including matching QPhiX)

• Reduced Amdahl’s law by accelerating the whole 
application, rather than just a library

F. T. Winter, M.A. Clark, R. G. Edwards, B. Joo, “A Framework for Lattice QCD 
Calculations on GPUs”, IPDPS’14, arXiv:1408.5925 [hep-lat]  (replotted)
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QDP-JIT via LLVM for AMD & Intel Xe?

tmp3 = u[nu]*tmp;

Build 
LLVM IR 
Builder

CUfunction

libdevice.bc

CUDA DriverAPI
cuLaunchKernel()

Execute!

Build Function:

LLVM IR Builder NVVM  
Math functions

NVIDIA GPU Approach Intel Xe approach? AMD GPU Approach 

tmp3 = u[nu]*tmp;

libocml.bc

Execute!

Build Function:

LLVM IR Builder

LLVM IR/Module?/SPIRV?

ROCr/HIP kernel launch?/ 
OpenCL driver, dlopen()?

OCML 
Math functions

tmp3 = u[nu]*tmp;

???

Execute!

Build Function:

LLVM IR Builder

LLVM IR → SPIRV

Intel Graphics driver 
(OpenCL?)

Math functions

Preliminary discussions 
about this with Frontier 

COE

We need 
to work with 
Intel more 

on this
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Conclusions & Future Work
• Both Kokkos and SYCL were sufficiently expressive for Dslash (parallel_for)

• Kokkos Dslash performed on par with QUDA on NVIDIA GPUs, and QPhiX on KNL (with SIMD type)

• SYCL performance depends a lot on the combination of compiler and driver

• LLVM is universal and allows constructing DSLs such as QDP-JIT

-  Ports of QDP-JIT will likely have different branches for each architecture (different dispatch, etc)

• Libraries are also being ported (not discussed here)

• Ongoing / Future work with Kokkos and SYCL
- Warp/Subgroup level SIMD - in progress using Intel’s SYCL Subgroup-ND range extension

- Targeting AMD - in progress using new Kokkos HIP Back End, now looking at performance

- Trying out the Kokkos SYCL/DPC++ back end and OpenMP offload back-ends as they develop 

- Evaluate using Kokkos to implement QDP++

- Considering multi-node device aspects (communication)

• Lots of ongoing work by the LQCD Software Community on porting codes to ECP systems
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- Repo: https://github.com/bjoo/KokkosDslash.git
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• SyCLDslash MiniApp:
- Repo: https://github.com/bjoo/SyCLDslash.git

- Workspace repo (with dependencies): https://github.com/bjoo/SyCLDslashWorkspace.git

• Remember to clone with ‘—recursive’ !!! 

• Intel Publicly available SyCL Compiler: https://github.com/intel/llvm
- sycl branch

• Kokkos: https://github.com/kokkos

• SyCL:  https://www.khronos.org/sycl/

• CodePlay Compiler: https://www.codeplay.com/products/computesuite/computecpp
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• Subgroup SIMD extension : https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroupNDRange/SubGroupNDRange.md

• QUDA: https://github.com/lattice/quda,  https://lattice.github.io/quda,  M. A. Clark et. al. Comput Phys. Commun. 181, 1517 (2010) [arXiv:
0911.3191 [hep-lat]

• QPhiX: https://github.com/jeffersonlab/qphix
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