
Thomas Jefferson National Accelerator Facility

Lattice QCD, Programming Models
and Porting LQCD codes to Exascale

Bálint Joó - Jefferson Lab
Feb 19, 2020

HPC Roundtable

Thomas Jefferson National Accelerator Facility

LQCD as an application
• Replace Spacetime with a 4-Dimentional

Lattice

a

Thomas Jefferson National Accelerator Facility

• Replace Spacetime with a 4-Dimentional
Lattice

• Quark fields on the lattice sites: spinors
(either complex 3-vectors, or 4x3 “vectors”)

LQCD as an application

a

Thomas Jefferson National Accelerator Facility

• Replace Spacetime with a 4-Dimentional
Lattice

• Quark fields on the lattice sites: spinors
(either complex 3-vectors, or 4x3 “vectors”)

• Strong Force Gauge fields on links: 3x3
complex matrices

LQCD as an application

a

Thomas Jefferson National Accelerator Facility

• Replace Spacetime with a 4-Dimentional Lattice

• Quark fields on the lattice sites: spinors (either
complex 3-vectors, or 4x3 “vectors”)

• Strong Force Gauge fields on links: 3x3 complex
matrices

• Interactions are typically local
- closed loops (3-matrix x 3-matrix)

- covariant stencils (3-matrix x 3-vector)

• Also lattice wide summations:
- global sums, inner products etc.

• Extremely well suited to data-parallel approaches
- complex numbers and factors of 3 are often unfriendly to

automatic vectorization - we need to usually build that in.

LQCD as an application

a

Thomas Jefferson National Accelerator Facility

Typical LQCD Workflow

Propagators, graph nodes & edges
eigenvectors etc.

- Linear Solves for quark propagators on sources
- e.g. O(1M) solves/config for spectroscopy
- Solver: same matrix, many right hand sides
- Throughput limited
- Ensemble: Many small jobs

Graph Contractions
- O(10K)-O(100K) diagrams
- sub-diagram reuse challenge
- main operation is batched

ZGEMM
- Potential large scale I/O challenge
- Ensemble: Many single node jobs

Correlation
Function

Fitting and Analysis
- workstations

D. J. Wilson et. al. PRD 91, 054008 (2015)

…

…

Configuration Generation
- Hybrid Molecular Dynamics Monte Carlo
- Linear Solves for Fermion Forces
- Data parallel code for non-solver parts
- Strong Scaling Limited
- ‘Large’ long running jobs

D. J. Wilson et. al. PRD 91, 054008 (2015)
7

0.8

1.0

1.2

1.4

 5 10 15 20 25 30
0.8

1.0

1.2

1.4

 5 10 15 20 25 30
0.8

1.0

1.2

1.4

 5 10 15 20 25 30

0.8

1.0

1.2

1.4

 5 10 15 20 25 30
0.8

1.0

1.2

1.4

 5 10 15 20 25 30
0.8

1.0

1.2

1.4

 5 10 15 20 25 30

0.8

1.0

1.2

1.4

 5 10 15 20 25 30
0.8

1.0

1.2

1.4

 5 10 15 20 25 30
0.8

1.0

1.2

1.4

 5 10 15 20 25 30

0.8

1.0

1.2

1.4

 5 10 15 20 25 30
0.8

1.0

1.2

1.4

 5 10 15 20 25 30
0.8

1.0

1.2

1.4

 5 10 15 20 25 30 0.16

0.18

0.20

0.22

0.24

0.26

0.28

FIG. 2. Eigenvalues of Eq. 3, �n(t), in the isospin–1/2 case ~P = [001], ⇤ = A1 on the 243 lattice. Plotted as eEn(t�t0)�n(t) are

the data points and a timeslice-correlated fit of the form �n(t) = (1 � An)e
�En(t�t0) + Ane

�E0
n(t�t0). The set of 27 operators

used in the variational basis is listed beneath the plot.

ing near-degenerate states, with statistical precision on
the energy values at or below 1%.

The matrix elements
⌦
n
��O†

i (0)
��0
↵
are also well deter-

mined in the solution of Eq. 3, and their relative size
can give us some insight into the make-up of the states
in our excited spectrum. As an example, we show in Fig-
ure 3, the spectrum and relative overlap matrix-elements
(normalized as in [31]) of the lowest 15 states in the
[011]A1 (243) channel extracted from a 27–dimensional
correlation matrix. In the main we observe a separation
between states with significant overlap onto ⇡K oper-
ators from those with overlap onto ⌘K operators. This
likely reflects the relatively small breaking of SU(3) flavor
symmetry in our calculation with m⇡ = 391MeV, mK =
549MeV, m⌘ = 589MeV. With SU(3) flavor symmetry,
the J = 0, 2 . . . channels have much reduced coupling to
⌘K compared to ⇡K [3, 48]. On the other hand, the
J = 1, 3 . . . channels have equal coupling to ⇡K, ⌘K,
but since the first vector resonances above ⌘K threshold
likely lie o↵ the top of the scale we have presented, we
are unlikely to see this coupling manifested. The origin
of these SU(3) flavor arguments is presented in Appendix
A.

If QCD were such that hadrons had no residual in-
teractions, our “meson-meson” operator basis would be

diagonal, with for example an operator ⇡n2
⇡
Kn2

K
produc-

ing an eigenstate of energy E
n.i.
cm =

q�
En.i.

lat.

�2
� n2

~P

�
2⇡
L

�2

where E
n.i.
lat. =

q
m2

⇡ + n2
⇡

�
2⇡
L

�2
+
q

m2
K + n2

K

�
2⇡
L

�2
. If

states appear in the spectrum that di↵er from these en-
ergies, there is some indication of interactions, including
the possibility of resonances.
The presence in Fig. 3 of a state below ⇡K thresh-

old, significantly below the first non-interacting ⇡K level,
and which has strong overlap onto “single-meson” oper-
ators, likely suggests a J = 1 K

? state that is either
bound, or barely above threshold. Above ⇡K thresh-
old we observe several states displaced somewhat from
non-interacting ⇡K positions, which show some degree
of overlap onto both ⇡K-like constructions and “single-
meson” operators. Above the ⌘K threshold, we observe
states with strong overlap onto ⌘K-like constructions ly-
ing quite close to non-interacting ⌘K positions. High
in the spectrum, above ⇡⇡K threshold2 a state is ob-
served having strong overlap onto “single-meson” opera-
tors which in the rest frame would overlap with J = 2.

2 but recall that we are not including ⇡⇡K-like operators in the
basis

Thomas Jefferson National Accelerator Facility

• Level structure worked out over last 4
iterations of the SciDAC program

• Data Parallel Layer (QDP) over a
communications abstraction layer,
presents programmer with a ‘virtual
grid machine’

• Applications can be written on top of
the Data Parallel Layer, calling out to
Highly Optimized Libraries as
needed.

• Grid is a new code, also providing a
data parallel layer, and similar
layering internally (but not broken out
into separate packages)

Apps

Libraries

QMP

QDP++/QDP-JIT/QDP-C

QUDA

Chroma CPS MILC

Grid

MPI/Other Comms

Data Parallel

Comms

MGProto &
QPhiX

General Software Organization

Thomas Jefferson National Accelerator Facility

• Level structure worked out over last 4
years of SciDAC

• Data Parallel Layer (QDP) over a
communications abstraction layer,
presents programmer with a ‘virtual
grid machine’

• Applications written on top of the
Data Parallel Layer, calling out to
Highly Optimized Libraries as
needed.

• Grid is a new code, also providing a
data parallel layer, and similar
layering internally (but not broken out
into separate packages)

Apps

Libraries

QMP

QDP++/QDP-JIT/QDP-C

QUDA

Chroma CPS MILC

Grid

MPI/Other Comms

Data Parallel

Comms

MGProto &
QPhiX

General Software Organization

Key Goals:
Port Data Parallel Layer,

Port Libraries,
Aim for Performance

Portability

Thomas Jefferson National Accelerator Facility

Exascale & Pre-Exascale Systems
• Perlmutter (formerly NERSC-9)

- AMD CPUs, NVIDIA Next Gen GPUs.

- Slingshot fabric from Cray

• Aurora
- Xeon CPUs + Intel Xe Accelerators

- Slingshot fabric from Cray

• Frontier
- AMD CPUs + AMD Radeon GPUs

- Slingshot fabric from Cray

• MPI + X programming model

• Horsepower for all the systems will come from accelerators

• But the accelerators are different between the 3 systems

Thomas Jefferson National Accelerator Facility

Node Programming Model Options
Support OpenMP Offload Kokkos/Raja DPC++/SYCL HIP C++ pSTL CUDA

NVIDIA GPU

AMD GPU

Intel Xe

CPUs

Fortran

FPGAs

Comments Compilers Maturing,
some C++ issues

DPC++ and HIP back
ends in development

NVIDIA via POCL or
Codeplay Backend, AMD
via hipSYCL for now, well

supported for Intel

Fortran via cross
calling, well

supported for AMD
GPUs

The way of the future?
parallelism in the base

language. Tech
previews just now

Fortran via PGI CUDA
Fortran, well

supported for NVIDIA
GPUs

Supported In development
or aspirational

Can be made to work
via 3rd party extension

or product or hack
Not supported

Disclaimer: this is my current view, products and support levels can change. This picture may become out of date very soon

Thomas Jefferson National Accelerator Facility

OpenMP Offload
• Offloaded axpy in OpenMP
#pragma omp target teams distribute parallel for simd
 map(to:z[:N]) map(a,x[:N],y[:N])
for(int i=0; i < N; i++) // N is large
{
 z[i] = a*x[i] + b[i];
}

• Collapses:

- omp target - target the accelerator,

- omp teams - create a league of teams

- omp distribute - distribute the works amongst the teams

- omp parallel for simd - perform a SIMD-ized parallel for

- map a, x and y to the accelerator and map resulting z back out (data movement).

Thomas Jefferson National Accelerator Facility

HIP
• HIP is AMD’s “C++ Heterogeneous-Compute

Interface for Portability”

• Take your CUDA API and replace ‘cuda’ with ‘hip’:
- cudaMemcpy() -> hipMemcpy()

- kernel<<>>() -> hipLaunchKernelGGL(kernel,…)

- and other slight changes.

- You can use hipify tool to do first pass of conversion
automatically

• Open Source

• Portability between NVIDIA and AMD GPUs only.

Thomas Jefferson National Accelerator Facility

Kokkos

• View - multi-dimensional array, index order specified by Layout, location by
MemorySpace policy. Layout allows appropriate memory access for CPU/GPU

• Parallel for dispatches a C++ lambda

• Kokkos developers on C++ standards committee - work to fold features into C++

Kokkos::View<float[N],LayoutLeft,CudaSpace> x(“x”); // N is large
Kokkos::View<float[N],LayoutLeft,CudaSpace> y(“y”);
Kokkos::View<float[N],LayoutLeft,CudaSpace> z(“z”);

float a=0.5;

Kokkos::parallel_for(“zaxpy", N, KOKKOS_LAMBDA (const int& i) {
 z(i) = a*x(i) + y(i); // view provides indexing operator()
});

Thomas Jefferson National Accelerator Facility

Portability via Kokkos
• Kokkos provides portability via back-

ends: e.g. OpenMP, CUDA, …

• Most abstractions are provided in a
C++ Header library
- parallel_for, reduction, scans

• Kokkos provides the Kokkos View
data-type
- user can customize index order

- explicit memory movement only

- select memory space via policy

• Bind Execution to Execution Space
- select back end via policy

Kokkos Abstractions

CUDA
Back-End

OpenMP
Back-End

OpenMP
target

Back-End

HIP
Back-End

SYCL/
DPCPP

Back-End

Stable and
Production ready In Development

Thomas Jefferson National Accelerator Facility

sycl::queue myQueue;
sycl::buffer<float,1> x_buf(LARGE_N);
sycl::buffer<float,1> y_buf(LARGE_N);
sycl::buffer<float,1> z_buf(LARGE_N);

// … fill buffers somehow …
float a = 0.5;
{
 myQueue.submit([&](handler& cgh) {
 auto x=x_buf.getAccess<access::mode::read>(cgh);
 auto y=y_buf.getAccess<access::mode::read>(cgh);
 auto z=z_buf.getAccess<access::mode::write>(cgh);

 cgh.parallel_for<class zaxpy>(LARGE_N,[=](id<1> id){
 auto i = id[0];
 z[i]=a*x[i] + y[i];
 });
 });
}

SYCL
• SYCL manages

buffers

• Only access buffers
via accessors

• can track accessor
use and build data
dependency graph to
automate data
movement

• What does this mean
for non SyCL
Libraries with
pointers? (e.g. MPI)

SYCL runtime
manages data in

buffers
access buffer data
via accessors in
command group

(cgh) scope or host
accessor

kernels must have a
unique name in C++

Thomas Jefferson National Accelerator Facility

sycl::queue myQueue;
sycl::device dev=myQueue.get_device();
sycl::context con=myQueue.get_context();

float* x=sycl::malloc_device(LARGE_N*sizeof(float),dev,con);
float* y=sycl::malloc_device(LARGE_N*sizeof(float),dev,con);
float* z=sycl::malloc_device(LARGE_N*sizeof(float),dev,con);

// … fill aarrays somehow somehow …
float a = 0.5;
{
 myQueue.submit([&](handler& cgh) {
 cgh.parallel_for(LARGE_N,[=](id<1> id){
 auto i = id[0];
 z[i]=a*x[i] + y[i];
 });
 });
}
// free pointers etc..

USM gives host/
device pointers

and

Unnamed lambda extension

Intel OneAPI DPC++ extensions
• USM extension allows

management of arrays via
pointers (more CUDA-like)

• Memcpy ops to move data
between host and device
(not shown here)

• Reductions !!

• Unnamed Lambda extension
obviates need for a class
name for parallel for

• Libraries (e.g. MPI) can do
intelligent things with USM
pointers (e.g. direct device
access)

• Subgroup Extension allows
more explicit SIMD-ization

Portability via SYCL
Intel LLVM

OneAPI/DPCPP
Codeplay

ComputeCPP
HIP-SYCL

SPIR/SPIRV

HD
Graphics FPGA

Intel OpenCL Drivers POCL Driver

Xeon
Server

NVIDIA
GPU

PTX

AMD
GPU

CUDA
driver

ROCm
driver

HIP

Other
CPU

SPIR/SPIRV

?

Consistency
in implementing

standard (?)

Manufacturers
all have favorite

standards

Codeplay
Backend

NEW!

Thomas Jefferson National Accelerator Facility

US LQCD Codes are C++/C
• For C/C++ codes, OpenMP offload, Kokkos/Raja, or DPC++ and SYCL are the

most obvious candidates currently. pSTL may become interesting in the near future

• Performance Portability Experiments:
- OpenMP Offload: P. A.Boyle, K. Clark, C. DeTar, M. Lin, V. Rana, A. V. Aviles-Castro,

“Performance Portability Strategies for Grid C++ expression templates” arxiv:1710.09409

- OpenMP Offload: P. Steinbrecher and HotQCD - OpenMP implementation for Intel Gen9

- Kokkos and SYCL: B. Joo, P3HPC @ SC19

- Early pSTL experiments by K. Clark

• The lattice developer community is paying attention to DPC++/SYCL, HIP, and
OpenMP offload as the porting work to the new machines becomes more urgent.

• I will focus on our local work with the Chroma code and Kokkos and SYCL

Thomas Jefferson National Accelerator Facility

Wilson Dslash in Kokkos and SYCL
• When looking at a new programming model,

it helps to have a “simple” mini-app to
evaluate whether the model is viable

• We chose the Wilson-Dslash operator as it is
- sufficiently nontrivial.

- well understood in terms of performance

- has many hand optimized implementations, e.g.
QPhiX on KNL, QUDA on NVIDIA GPUs

• Initial work in Kokkos looked at vectorization

• More recently we looked at porting to SYCL,
and seeing how portable SYCL is

t

t-1

t+1

y
z

t

Thomas Jefferson National Accelerator Facility

Basic Performance Bound for Dslash
• R = no of reused input spinors

• Br = read bandwidth

• Bw = write bandwidth

• G = size of Gauge Link matrix (bytes)

• S = size of Spinor (bytes)

• r = 1 (read-for-write), =0 (no read-for-write)

• Simplify: Assume Br = Bw = B

F =
1320

8G/Br + (8�R+ r)S/Br + S/Bw

R=0 R=1 R=2 R=3 R=4 R=5 R=6 R=7
r=0 0.92 0.98 1.06 1.15 1.25 1.38 1.53 1.72
r=1 0.86 0.92 0.98 1.06 1.15 .1.25 1.38 1.53

AI =
1320

8G+ (9�R+ r)S

Wilson Dslash Arithmetic Intensities (F/B) for 32-bit floating point numbers (G=72B, S=96B)

Vectorizing Dslash for Single RHS

Vector Unit of Length N
log2N dimensional

virtual node (VN) grid

Lay-out lattice over
virtual node grid

Ascribe corresponding sites
from virt. node grid into

vector lanes

Virtual Node Vectorization
(P. Boyle, e.g. in Grid, BFM)

e.g. arXiv:1512.03487[hep-lat]

• Treat SIMD lanes like a grid of virtual computing
elements (virtual nodes, VNs)

• Lay-out lattice onto VN grid
- original site -> (‘outer’ site, lane)

• All arithmetic changes to straightforward SIMD arithmetic

• Accessing nearest neighbors
- on edge of `outer lattice` communicate between ‘virtual

nodes’ (lanes).

- this is a shuffle operations (e.g. _mm512_shuffle_ps in
AVX512)

• On GPUs
- use N=1 (no vectorization) => trivial shuffles. ✅

- Or use warp/subgroup level SIMD (less portable) 𐄂
outer
grid

outer grid
lanes

Kokkos Implementation: Kernel
template<typename VN, typename GT, typename ST, typename TGT, typename TST, const int isign, const int target_cb>
struct VDslashFunctor {

VSpinorView<ST,VN> s_in;
VGaugeView<GT,VN> g_in;
VSpinorView<ST,VN> s_out;
SiteTable<VN> neigh_table;

KOKKOS_FORCEINLINE_FUNCTION
 void operator()(const int& xcb, const int& y, const int& z, const int& t) const
 {
 int site = neigh_table.coords_to_idx(xcb,y,z,t);
 int n_idx;

 typename VN::MaskType mask;
SpinorSiteView<TST> res_sum ;
HalfSpinorSiteView<TST> proj_res , mult_proj_res;

 for(int spin=0; spin < 4; ++spin
 for(int color=0; color < 3; ++color)
 ComplexZero(res_sum(color,spin));

 neigh_table.NeighborTMinus(xcb,y,z,t,n_idx,mask); // Get neighbor and permutation mask
 KokkosProjectDir3Perm<ST,VN,TST,isign>(s_in, proj_res,n_idx,mask); // spin project
 mult_adj_u_halfspinor<GT,VN,TST,0>(g_in, proj_res,mult_proj_res,site); // matrix multiply (neighbor matrix permuted already)
 KokkosRecons23Dir3<TST,VN,isign>(mult_proj_res,res_sum); // reconstruct

 // Other dirs. (Z-, Y-, X-, X+, Y+, Z+, T+
 #pragma unroll
 for(int spin=0; spin < 4; ++spin)
 for(int color=0; color < 3; ++color) {
 Stream(s_out(site,spin,color),res_sum(color,spin));
 }};

Neighbouring site

Vectorisation Permutation mask: for edges

operator() gets 4 indices from the multi
dimensional range policy

Kokkos Implementation: Dispatch
template<typename VN, typename GT, typename ST, typename TGT, typename TST>
class KokkosVDslash {
public:
 const LatticeInfo& _info;
 SiteTable<VN> _neigh_table;

 KokkosVDslash(const LatticeInfo& info) : _info(info),
 _neigh_table(info.GetCBLatticeDimensions()[0],info.GetCBLatticeDimensions()[1],info.GetCBLatticeDimensions()[2],info.GetCBLatticeDimensions()[3]) {}

 void operator()(const KokkosCBFineVSpinor<ST,VN,4>& fine_in, const KokkosCBFineVGaugeFieldDoubleCopy<GT,VN>& gauge_in,
 KokkosCBFineVSpinor<ST,VN,4>& fine_out, int plus_minus, const IndexArray& blocks) const
 {
 int source_cb = fine_in.GetCB();
 int target_cb = (source_cb == EVEN) ? ODD : EVEN;

 const VSpinorView<ST,VN>& s_in = fine_in.GetData();
 const VGaugeView<GT,VN>& g_in = gauge_in.GetData();
 VSpinorView<ST,VN>& s_out = fine_out.GetData();

 IndexArray cb_latdims = _info.GetCBLatticeDimensions();

 MDPolicy policy({0,0,0,0}, {cb_latdims[0],cb_latdims[1],cb_latdims[2],cb_latdims[3]}, {blocks[0],blocks[1],blocks[2],blocks[3]});

 if(plus_minus == 1) {
 if (target_cb == 0) {
 VDslashFunctor<VN,GT,ST,TGT,TST,1,0> f = {s_in, g_in, s_out, _neigh_table}; // Instantiate functor: set fields
 Kokkos::parallel_for(policy, f); // Dispatch
 }
 else {
 …
 } }}};

4D Blocked Lattice Traversal Dispatch

SYCL Kernel Dispatch
template<typename VN, typename GT, typename ST, int dir, int cb>. class dslash_loop; // Just to give SyCL Kernel a name; Yuck!

template<typename VN, typename GT, typename ST>
class SyCLVDslash {
 const LatticeInfo& _info;
 SiteTable _neigh_table;
public:
 SyCLVDslash(const LatticeInfo& info) : _info(info),
 _neigh_table(info.GetCBLatticeDimensions()[0],info.GetCBLatticeDimensions()[1],info.GetCBLatticeDimensions()[2],info.GetCBLatticeDimensions()
[3]) {}

 void operator()(const SyCLCBFineVSpinor<ST,VN,4>& fine_in, const SyCLCBFineVGaugeFieldDoubleCopy<GT,VN>& gauge_in,
 SyCLCBFineVSpinor<ST,VN,4>& fine_out, int plus_minus)

 {
 int source_cb = fine_in.GetCB(); int target_cb = (source_cb == EVEN) ? ODD : EVEN;
 SyCLVSpinorView<ST,VN> s_in = fine_in.GetData();
 SyCLVGaugeView<GT,VN> g_in = gauge_in.GetData();
 SyCLVSpinorView<ST,VN> s_out = fine_out.GetData();
 IndexArray cb_latdims = _info.GetCBLatticeDimensions();
 int num_sites = fine_in.GetInfo().GetNumCBSites();

 cl::sycl::queue q;
 if(plus_minus == 1) {
 if (target_cb == 0) {
 q.submit([&](cl::sycl::handler& cgh) {
 VDslashFunctor<VN,GT,ST,1,0> f{
 s_in.template get_access<cl::sycl::access::mode::read>(cgh),
 g_in.template get_access<cl::sycl::access::mode::read>(cgh),
 s_out.template get_access<cl::sycl::access::mode::write>(cgh),
 _neigh_table.template get_access<cl::sycl::access::mode::read>(cgh)
 }; // Setup Functor

 cgh.parallel_for<dslash_loop<VN,GT,ST,1,0>>(cl::sycl::range<1>(num_sites), f);
 });
 }
 else {

Ugly: Need a ‘typename’ for dispatches, unless
you have Intel -funnamed-lambda extension

Get Views our of user data types

Pass ViewAccessors to functor

1D Dispatch for now

template<typename VN, typename GT, typename ST, int dir, int cb>. class dslash_loop; // Just to give SyCL Kernel a name; Yuck!

template<typename VN, typename GT, typename ST>
class SyCLVDslash {
 const LatticeInfo& _info;
 SiteTable _neigh_table;
public:
 SyCLVDslash(const LatticeInfo& info) : _info(info),
 _neigh_table(info.GetCBLatticeDimensions()[0],info.GetCBLatticeDimensions()[1],info.GetCBLatticeDimensions()[2],info.GetCBLatticeDimensions()
[3]) {}

 void operator()(const SyCLCBFineVSpinor<ST,VN,4>& fine_in, const SyCLCBFineVGaugeFieldDoubleCopy<GT,VN>& gauge_in,
 SyCLCBFineVSpinor<ST,VN,4>& fine_out, int plus_minus)

 {
 int source_cb = fine_in.GetCB(); int target_cb = (source_cb == EVEN) ? ODD : EVEN;
 SyCLVSpinorView<ST,VN> s_in = fine_in.GetData();
 SyCLVGaugeView<GT,VN> g_in = gauge_in.GetData();
 SyCLVSpinorView<ST,VN> s_out = fine_out.GetData();
 IndexArray cb_latdims = _info.GetCBLatticeDimensions();
 int num_sites = fine_in.GetInfo().GetNumCBSites();

 cl::sycl::queue q;
 if(plus_minus == 1) {
 if (target_cb == 0) {
 q.submit([&](cl::sycl::handler& cgh) {
 VDslashFunctor<VN,GT,ST,1,0> f{
 s_in.template get_access<cl::sycl::access::mode::read>(cgh),
 g_in.template get_access<cl::sycl::access::mode::read>(cgh),
 s_out.template get_access<cl::sycl::access::mode::write>(cgh),
 _neigh_table.template get_access<cl::sycl::access::mode::read>(cgh)
 }; // Setup Functor

 cgh.parallel_for<dslash_loop<VN,GT,ST,1,0>>(cl::sycl::range<1>(num_sites), f); // Dispatch (1D for now)
 });
 }
 else {

Ugly: Need a ‘typename’ for dispatches, unless
you have Intel -funnamed-lambda extension

Get Views our of user data types

Pass ViewAccessors to functor

Future: instead of accessors use
USM pointers, or Views implemented

using USM pointers

SYCL Kernel DispatchSYCL Kernel Dispatch

Experiments & Standard Candles
• We measured the performance of Kokkos & SYCL Dslash kernels on

- Volta V100 GPUs. using Cori GPU system at NERSC

- Skylake CPUs (single socket) using the CPUs on Cori GPU system at NERSC

- KNL Systems using Jefferson Lab 18p cluster nodes

- Gen9 GPU using an Intel NUC System

• Performance ‘Standard Candles’
- On GPU: Dslash from QUDA Library, with equivalent compression/precision options

• Highly optimized QCD library for GPUs, M. A. Clark et. al. Comput Phys. Commun. 181, 1517 (2010)
[arXiv:0911.3191 [hep-lat], Download via: http://lattice.github.io/quda/

- On CPU/KNL: Dslash from QPhiX Library with equivalend compression/precision options

• Joo et. al. Kunkel J.M., Ludwig T., Meuer H.W. (eds) Supercomputing. ISC 2013. Lecture Notes in
Computer Science, vol 7905. Springer, Berlin, Heidelberg, https://github.com/jeffersonlab/qphix

• To use SYCL on KNL and GPUs we used POCL v1.8: http://portablecl.org/

http://lattice.github.io/quda/
https://github.com/jeffersonlab/qphix
http://portablecl.org/

Thomas Jefferson National Accelerator Facility

SYCL on Intel HD Graphics

• Gen-9 GPU in a NUC (max DRAM bandwidth ~ 38 GB/sec, lattice had 324 sites

• Used Codeplay Community Edition (1.0.4 Ubuntu) and Intel Public LLVM-based SYCL Compiler (version in the paper).

• Fortran like complex: (RIRIRI…), Vector Like complex: (RRRR…IIII…).
- since V=1 these are the same layout but different operations

• Best performance: sustain 32-36 GB/sec, ~45 GFLOPS => AI ~ 1.25 => R=4-5.

Thomas Jefferson National Accelerator Facility

Combined Single RHS Results
• Kokkos using the virtual node SIMD

with a ‘Vector Type’ seems to work well
- ‘Vectype’ is AVX512 or our complex type

based on float2

- Kokkos::complex with ‘alignas’ keyword
works as well as float2

• SYCL + POCL did well on GPUs (had
linear lattice traversal, if we
implemented 4D it may be on par with
Kokkos & QUDA - future work)

• Kokkos without Vectype did not do well
on KNL - we anticipate the compiler
doesn’t do well with SIMD-izing
complex operations(?)

Thomas Jefferson National Accelerator Facility

LLVM: The Swiss Army Knife
• LLVM is compiler technology which underlies the

implementations of current programming models:
- Intel DPC++, HIPCC/HCC, NVCC, …

• Key concepts are
- a front end: e.g. Clang for C++

- an intermediate representation (IR)

- back ends: NVPTX,AMDGPU,X86,Power,Arm etc.

• LLVM also includes Just-In-Time Compilers
- compile functions/kernels at run-time

- powering high level languages like Julia

• LLVM can be used to write portable and efficient Domain
Specific Languages (DSLs).

C++ code Clang (front end)

LLVM IR

Optimization passesLLVM IR

Back End

.o PTX SPIRVGCN

dlopen() CUDA
driver

OpenCL
driver

ROCm
driver

X86
PowerPC NVPTX amdgpu

LLVMSPIRV

Thomas Jefferson National Accelerator Facility

QDP-JIT, QDP++ as a DSL
• QDP-JIT developed by F. Winter at JLab allowed us to

move all of the QDP++ data parallel layer to GPUs.
- Expression Templates (ET) generated CUDA PTX kernels

- PTX Kernels were launched by CUDA driver

- Automated Memory movement between host/device (via
software cache)

- Provided data layout flexibility

• Later, PTX generation moved to LLVM libraries
- turns QDP-JIT into a DSL for QCD

• CPU version was developed to target x86/KNL
- No ‘driver’, LLVM JIT-ed to objects (LLVM Modules)

- Vector friendly layout was supported (including matching QPhiX)

• Reduced Amdahl’s law by accelerating the whole
application, rather than just a library

F. T. Winter, M.A. Clark, R. G. Edwards, B. Joo, “A Framework for Lattice QCD
Calculations on GPUs”, IPDPS’14, arXiv:1408.5925 [hep-lat] (replotted)

Thomas Jefferson National Accelerator Facility

QDP-JIT via LLVM for AMD & Intel Xe?

tmp3 = u[nu]*tmp;

Build
LLVM IR
Builder

CUfunction

libdevice.bc

CUDA DriverAPI
cuLaunchKernel()

Execute!

Build Function:

LLVM IR Builder NVVM
Math functions

NVIDIA GPU Approach Intel Xe approach? AMD GPU Approach

tmp3 = u[nu]*tmp;

libocml.bc

Execute!

Build Function:

LLVM IR Builder

LLVM IR/Module?/SPIRV?

ROCr/HIP kernel launch?/
OpenCL driver, dlopen()?

OCML
Math functions

tmp3 = u[nu]*tmp;

???

Execute!

Build Function:

LLVM IR Builder

LLVM IR → SPIRV

Intel Graphics driver
(OpenCL?)

Math functions

Preliminary discussions
about this with Frontier

COE

We need
to work with
Intel more

on this

Thomas Jefferson National Accelerator Facility

Conclusions & Future Work
• Both Kokkos and SYCL were sufficiently expressive for Dslash (parallel_for)

• Kokkos Dslash performed on par with QUDA on NVIDIA GPUs, and QPhiX on KNL (with SIMD type)

• SYCL performance depends a lot on the combination of compiler and driver

• LLVM is universal and allows constructing DSLs such as QDP-JIT

- Ports of QDP-JIT will likely have different branches for each architecture (different dispatch, etc)

• Libraries are also being ported (not discussed here)

• Ongoing / Future work with Kokkos and SYCL
- Warp/Subgroup level SIMD - in progress using Intel’s SYCL Subgroup-ND range extension

- Targeting AMD - in progress using new Kokkos HIP Back End, now looking at performance

- Trying out the Kokkos SYCL/DPC++ back end and OpenMP offload back-ends as they develop

- Evaluate using Kokkos to implement QDP++

- Considering multi-node device aspects (communication)

• Lots of ongoing work by the LQCD Software Community on porting codes to ECP systems

References
• KokkosDslash MiniApp:

- Repo: https://github.com/bjoo/KokkosDslash.git

- Workspace repo (with dependencies): https://github.com/bjoo/KokkosDslashWorkspace.git

• SyCLDslash MiniApp:
- Repo: https://github.com/bjoo/SyCLDslash.git

- Workspace repo (with dependencies): https://github.com/bjoo/SyCLDslashWorkspace.git

• Remember to clone with ‘—recursive’ !!!

• Intel Publicly available SyCL Compiler: https://github.com/intel/llvm
- sycl branch

• Kokkos: https://github.com/kokkos

• SyCL: https://www.khronos.org/sycl/

• CodePlay Compiler: https://www.codeplay.com/products/computesuite/computecpp

• USM Extension: https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc

• Subgroup SIMD extension : https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroupNDRange/SubGroupNDRange.md

• QUDA: https://github.com/lattice/quda, https://lattice.github.io/quda, M. A. Clark et. al. Comput Phys. Commun. 181, 1517 (2010) [arXiv:
0911.3191 [hep-lat]

• QPhiX: https://github.com/jeffersonlab/qphix

https://github.com/bjoo/KokkosDslash.git
https://github.com/bjoo/KokkosDslashWorkspace.git
https://github.com/bjoo/SyCLDslash.git
https://github.com/bjoo/SyCLDslashWorkspace.git
https://github.com/intel/llvm
https://github.com/kokkos
https://www.khronos.org/sycl/
https://www.codeplay.com/products/computesuite/computecpp
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroupNDRange/SubGroupNDRange.md
https://github.com/lattice/quda
https://lattice.github.io/quda
https://github.com/jeffersonlab/qphix

Acknowledgments
• B. Joo acknowledges funding from the U.S. Department of Energy, Office of Science, Office of

Advanced Scientific Computing Research under the Exascale Computing Project (2.2.1.01
ADSE03 Lattice QCD)

• B. Joo acknowledges funding from the U.S. Department of Energy, Office of Science, Offices of
Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research under the
SciDAC-4 program.

• B. Joo acknowledges travel funding from NERSC for a summer Affiliate Appointment for work on
Kokkos

• The 2017 ORNL Hackathon at NASA was a collaboration between and used resources of both
the National Aeronautics and Space Administration and the Oak Ridge Leadership Computing
Facility at Oak Ridge National Laboratory. Oak Ridge Nation Laboratory is supported by the
Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

• We gratefully acknowledge use of computer time at JeffersonLab (SciPhi XVI cluster), K80
Development node, NERSC Cori and Cori-GPU, OLCF Summit

