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The Past Through Tomorrow
► 10 years ago we saw and predicted a 

major change in computing architecture  
driven by CPU design limitations
• smaller, less powerful CPUs
• many more cores per CPU
• less memory per core

► In response, we have heavily invested in
multi-threaded frameworks to better 
make use available resources
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The Past Through Tomorrow

► Unfortunately, we will need much more 
computing power in the not so distant future 
than we have budgeted for 

► Frankly, storage / disk resource needs are 
even more scary, but that's a different talk

► 10 years ago we saw and predicted a 
major change in computing architecture  
driven by CPU design limitations
• smaller, less powerful CPUs
• many more cores per CPU
• less memory per core

► In response, we have heavily invested in
multi-threaded frameworks to better 
make use available resources
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Why Are LHC Computing Needs Increasing?
► As the luminosity of the beam increases, the number of interactions per bunch 

crossing (μ) ) increases dramatically
• events become much larger
• tracking becomes much more difficult
• track combinatorics begin to dominate in the simulation and reconstruction workflows
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How to Address the Computing Shortfall
► Most of HEP computing takes place on the "Grid"

• distributed federation of dedicated, commodity processors
• broad range of site and CPU performance

» tens to thousands of nodes
» >10 year old CPUs to most recent ones

• well established OS for ease of job deployment
» containerization has made this less important

• located primarily in Europe and USA
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How to Address the Computing Shortfall
► Most of HEP computing takes place on the "Grid"

• distributed federation of dedicated, commodity processors
• broad range of site and CPU performance

» tens to thousands of nodes
» >10 year old CPUs to most recent ones

• well established OS for ease of job deployment
» containerization has made this less important

• located primarily in Europe and USA

► In the past several years, there has been an increased
use of HPCs
• usually in opportunistic mode
• more challenging than Grid computing due to 

non-standard hardware, OS, and available system 
software / libraries

• containerization has reduced many of these issues
• this may be the way to address our computing shortfall
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Next Generation HPC Architectures
► In the next generation of supercomputers we see extensive use of accelerator technologies

• Oak Ridge: Summit (2018)
• 4608 IBM AC922 nodes w/ 2x Power9 CPU 
• 3x NVIDIA Volta V100 + NVLink / CPU

• LBL: NERSC-9 "Perlmutter" (2020)
• AMD EPYC "Milan" x86 only nodes + 

mixed CPU / "next gen" NVidia GPU

• Oak Ridge: Frontier (2021)
• 1.5 exaflop
• AMD EPYC CPU + 4x AMD "Instinct" GPU

• LLNL: Sierra (2018)
• 4320 IBM AC922 nodes w/ 2x Power9 CPU
• 2x NVIDIA Volta V100 + NVLink / CPU

• Argonne: Aurora A21 (2021)
• possibly first exascale HPC

• Intel Xeon CPU + Intel Xe/gen12 GPU + Optane
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• Argonne: Aurora A21 (2021)
• possibly first exascale HPC

• Intel Xeon CPU + Intel Xe/gen12 GPU + Optane
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• 2x Intel Xeon 6162 + 4x NVidia V100 GPU
• 2x CPU + 4x GPU + 2x Intel Stratix FPGA 

• Japan: Fugaku (2021)
• manycore ARM A64fx (48+2)
• integrated "SVE" 512 bit GPU-like accelerator 

• Spain: MareNostrum
• Xeon 8268 + Power9 + V100 GPU

• Switzerland: Piz Daint
• Xeon E5 2690 + NVidia P100 GPU
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• Oak Ridge: Frontier (2021)
• 1.5 exaflop
• AMD EPYC CPU + 4x AMD "Instinct" GPU

• Commercial clouds:
• Brainwave / Azure FPGA
• Google Cloud TPU
• Amazon EC2 P3

► US funding agencies have indicated that 
we will not be able to get allocations on
these HPCs if our code does not make 
use of accelerator hardware
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Differences Between CPU and GPU
► CPU:

• small number of very complicated cores
• branch prediction
• instruction pipelining
• prefetching

• multiple levels of large caches
• low latency

► GPU:
• very many (100k+) simple cores

• much more hardware for low precision ops than dp

• cores in a block operate in lockstep
• branch mis-prediction causes stalls for many cores

• small cache, complex memory hierarchy
• vectorized memory ops
• high throughput, high latency
• low power (per FLOP)
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Differences Between CPU and GPU
► CPU:

• small number of very complicated cores
• branch prediction
• instruction pipelining
• prefetching

• multiple levels of large caches
• low latency

► GPU:
• very many (100k+) simple cores

• much more hardware for low precision ops than dp

• cores in a block operate in lockstep
• branch mis-prediction causes stalls for many cores

• small cache, complex memory hierarchy
• vectorized memory ops
• high throughput, high latency
• low power (per FLOP)

Driving reason for GPU usage in HPCs:

Energy (power and cooling) requirements
to deploy a top 10 HPC with traditional 
architecture are cost prohibitive
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Modern-ish GPU
NVidia V100

● 6 Graphics Processor Cluster
● 42 Texture Processor Cluster
● 84 Streaming Multiprocessor

● 4x 8   FP64
● 4x 16 FP32
● 4x 16 INT32
● 2 Tensor Core

● 7.8  TFLOP FP64
● 15.7 TFLOP FP32
● 125  TFLOP Tensor matrix mult
● 300 W
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Modern-ish GPU
NVidia V100

● 6 Graphics Processor Cluster
● 42 Texture Processor Cluster
● 84 Streaming Multiprocessor

● 4x 8   FP64
● 4x 16 FP32
● 4x 16 INT32
● 2 Tensor Core

● 7.8  TFLOP FP64
● 15.7 TFLOP FP32
● 125  TFLOP Tensor matrix mult
● 300 W

    Modern CPU
● 1-2 TFLOP FP32
● ~150 W
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Why GPU Programming Is Challenging
► Separate "kernels" must be written to execute code on GPU

• using languages like CUDA (NVidia), SyCL (Intel), hip (AMD), OpenACC, Kokkos, …
► In order to take advantage of very wide GPU architectures, need LOTS of available 

parallelism ( > 100,000)
► GPU threads in a block need to execute same instruction to work efficiently

• branches and branch misprediction will cause poor GPU 
performance

► Complex memory hierarchy requires efficient management
• badly designed interaction between threads and memory 

locations can kill performance
• can't allocate new memory on GPU from a kernel : no STL

► Data structures need to be moved to and from GPU
• large latencies, slow-ish transfer speeds (PCIe, NVLink)
• conversion overhead if not in GPU-friendly format

► Amdahl's law: our code is made of many, many components
► Validation: different code paths for CPU / GPU
► Debugging is much more challenging
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HEP Reconstruction Workflows
► Workflows tend to be composed of many individual tasks, often in a very serial fashion

• limited inherent concurrency
• Amdahl's law limits gains if few modules offloaded

CMS

LHCb

ATLAS
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HEP Reconstruction Workflows
► Workflows tend to be composed of many individual tasks, often in a very serial fashion

• limited inherent concurrency
• Amdahl's law limits gains if few modules offloaded

CMS

LHCb

ATLAS

In general, HEP codes are poorly suited for GPUs:
● many discrete units, often needing serial invocation

● would need to touch many 100k lines of code
● large amounts of data manipulation and conversion

● GPU ↔ CPU data transmission latencies are prohibitive
● code structures are very branchy - lots of different paths that

are cut dependent
● GPU threads will stall

● loops are at best a few thousand units wide
● GPUs work best with >100k units
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Non-GPU Accelerators
► GPUs are not the only accelerator on the market

• FPGA
• Xilinx
• Intel Arria-10 (CPU + FPGA)
• Microsoft Azure / Brainwave (for NN inference)

• ASIC
• Intel Nervana for AI (separate chips for training and inference)
• Google TPU (optimized for TensorFlow)

► Programming for these is much more challenging than for GPUs
• Intel OneAPI / SyCL claims to target all Intel hardware with same source code

► No large HPC has yet decided to use non-GPU accelerators
• there are several smaller ones
• would not be surprised to see CPU + GPU + FPGA in next round
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Accelerator Usage In LHC Experiments
► LHCb:

• full online HLT1 re-written in CUDA to run on GPUs
• end-to-end solution, to minimized host ↔ device data transfers
• still not sure if will implement for Run 3:

• cost: what do GPUs do when not taking data? (HLT farms are very powerful compute 
resources)

• data buses / IO in each Event Builder node already saturated. Adding GPUs may be too much. 
also heat + airflow issues

► CMS
• reconstruction framework (cmssw) supports transparent offloading of modules to 

accelerator. modules re-activated when kernel has finished, and data is ready
• ability to do offline tracking (Patatrack)
• full Pixel, HCAL and ECAL online reconstruction

► Alice
• tracking: Full TPC and part of ITS on GPU. Hope to extend to full barrel tracking on GPU
• extensive memory management via custom allocators on GPU to reuse memory

► ATLAS
• evaluated use of GPUs in High Level Trigger for Run 2/3, but decided against it due to cost 

and data conversion inefficiencies. Re-evaulating for Run 4
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accelerator. modules re-activated when kernel has finished, and data is ready
• ability to do offline tracking (Patatrack)
• full Pixel, HCAL and ECAL online reconstruction

► Alice
• tracking: Full TPC and part of ITS on GPU. Hope to extend to full barrel tracking on GPU
• extensive memory management via custom allocators on GPU to reuse memory

► ATLAS
• evaluated use of GPUs in High Level Trigger for Run 2/3, but decided against it due to cost 

and data conversion inefficiencies. Re-evaulating for Run 4

  Experiments have had the best gains using accelerators in
  the online environment:

● hardware is more stable, and explicitly configured for desired
purpose

● tasks are simpler, code less complex
● data structures are often smaller than in offline
● can keep significant fraction if not the entire workflow on 

accelerator to minimize data transfer penalties
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Portability Challenges
► Next 3 major DOE HPCs each use a different GPU manufacturer

• Perlmuttuer: NVidia                 •  Aurora: Intel                        •  Frontier: AMD
► Each manufacturer has a preferred/supported language

• NVidia: CUDA                           •  Intel: dpc++ (OneAPI)         •  AMD: hip
► There also exist higher level abstraction layers that hide the specifics of the hardware

• OpenMP / OpenACC
• Kokkos / Raja  / Alpaka

► Language extensions and application libraries
• Thrust (stl-like libraries for GPUs)

► There is currently NO software solution that allows the same code to run on all three
• except sort-of OpenMP, which is very non-optimal, and requires a lot of hand tweaking

► LHC experiments have a very long timetable: project to run to 2038 and beyond
• between them, there are 10s of millions of lines of mostly C++ code
• can only afford to rewrite ONCE to code for accelerators if there's a demonstrated benefit

• ATLAS took > 3 years to recode for MT safety (and still isn't done)
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Hardware Mapping

NVidia

CUDA SYCL hcc OpenMP KOKKOS

Intel AMD

RAJA

OpenCL PTX ROCm

HIP

► The software / hardware mapping is somewhat complex. And currently fluid
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Hardware Mapping

NVidia

CUDA dpc++ hcc OpenMP KOKKOS

Intel AMD

RAJA

OpenCL PTX ROCm

HIP

► Intel has recently further complicated / simplified the situation by announcing it will 
drop OpenCL



C. Leggett  2020-02-18
26

Hardware Mapping
► If you start with a single known hardware architecture, things are a little clearer:

NVidia

CUDA dpc++ HIP OpenMP KOKKOS

Intel AMD

RAJA
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SyCL Ecosystem

dpc++
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SyCL / dpc++
► Single source
► C++ (understands C++17)
► No explicit memory transfers

• builds a DAG of kernel/data dependencies, transfers data as needed
► Executes on all platforms 

• to some extent. AMD support is limited (hipSyCL is a project of a PhD student)
• including CPU, FPGA
• choosable at runtime (kinda)

► Intel wants to push into llvm main branch
• become an open standard, and possibly c++ language extension

► OpenCL IR layer will be replaced by OneAPI "LevelZero"
• OpenCL v1.2 standard was too limiting

► Codeplay has promised a direct NVidia backend via CUDA calls
• Codeplay already provides a ptx backend for their SyCL compiler

► Concurrent kernels don't work yet, for ANY backend

https://github.com/illuhad/hipSYCL
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Kokkos
► Usually included as header files, as opposed to pre-made library

• hardware backend can only be selected at compile time
• can target CPUs (tbb, pthreads, OpenMP) as well as GPUs

► Somewhat less flexible than SyCL
• hard to explicitly dispatch kernels without use of a parallel_for-like construct
• need to identify back-end at compilation time (compilation time is loooong)
• no concurrent kernel execution at this time

• beta version that explicitly uses CUDA streams

► Has important features that aren't in SYCL
• reduction construct
• child tasks
• more performant (especially if you don't know what you're doing)

► Very good support infrastructure

► Support for Intel GPU and AMD in progress
• promised sometime this year
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OpenMP / OpenACC
► Two similar mechanisms for annotating code to direct the compiler to offload bits of 

code to other devices
• uses #pragmas

► OpenMP was really developed for MP on HPC
• very large and complex standard
• recently extended to target GPUs
• very prescriptive: need to tell compiler exactly how to unroll loops

• have to modify pragmas when move to different GPU architecture

► OpenACC developed explicitly for accelerators
• lets compiler make intelligent decision on how to decompose problems
• is a standard that describes what compilers should do, not must

• different compilers interpret should very differently

• very strong support in Fortran community

► Hardest to read (IMHO)
► Best supported on HPC
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Framework Integration
► What if we had tasks that could be offloaded?
► Significant impedance mismatch:

• V100 has 160,000 threads
• Most of our loops / data structures are much, much less wide than that

• gang data between events to increase GPU workload? major framework redesign.

► Scheduling and execution of concurrent kernels on the GPU likely necessary
• some support (eg CUDA streams), but not extensive and has non-insignificant 

performance drawbacks
• significantly limits portability solutions

• this will (is promised) to change this year (for Kokkos)

► Synchronous offloading of CUDA kernels has a major CPU penalty on parent thread
• lots of GPU ↔ CPU driver communication: CPU hardware thread cannot be re-tasked for 

other work, loosing all benefit of latency hiding.
• asynchronous offloading is much more performant, but currently not supported by ATLAS 

or LHCb framework (it is by CMS)
• NVidia is aware of the issue
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Shifting Paradigms
► Are we approaching the problem the wrong way?

► Instead of trying to make our code work in a poorly matched 
environment, like pounding a square peg into a round hole, 
can we re-frame the problem?

► Find tasks that are very well suited for accelerators
• Machine Learning: can problems be reformulated into ML?

• use Graph NNs for track finding instead of Kalman filters
• lots of other pattern identification-like tasks exist, such as calorimeter cell clustering
• hyperparameter searches

• Event Generation for Simulation
• madgraph and sherpa should work well on GPUs

• Apply lessons learned from GeantV vectorization of detector geometries
• Use RTX cores on NVidia for particle propagation

• chargless for now, but maybe we can convince NVidia to add curved line mechanics to future 
RTX cores!
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Final Thoughts
► The era of exascale HPCs has brought us to a place that we didn't want to go

• in pursuit of higher FLOP counts and energy efficiency, we've been forced to embrace an 
architecture that is very ill-suited for HEP computing (and many other kinds of science too)

• future architectures may be even more radical

► The accelerator and software tool ecosystem is complex, and rapidly changing
• we expect major developments in the software stack in the coming year
• we will probably see greater divergence in "gamer" cards vs "compute" cards

• RT cores, FP64 units, etc

• luckily, there seems to be a major push towards open standards adoption from all the 
major vendors

• unfortunately these seem to be competing standards

• the US DOE labs are giving large amounts of money to NVidia/Intel/AMD to develop 
software tools for accelerators

► It would behoove everybody tremendously if all these efforts were coordinated, and a 
single unified standard was developed. Otherwise the challenges of performant 
portability on heterogeneous architectures may prove overwhelming. 
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f in
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How To Use Accelerators In HEP
► Find sufficiently "wide" problems
► Use appropriate (flat) data structures
► Keep data as long as possible on accelerator

► Use existing libraries and tools
• cuBLAS
• TensorFlow
• pyTorch, numba, etc

► Rewrite your existing algorithms to use techniques that work well on accelerators
• massive parallelism
• machine learning

► If all else fails:
• Learn CUDA (or maybe SyCL / Kokkos)
• Learn about the hardware to understand memory and thread hierarchy
• Profile your algorithms to find offloading candidates
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