Next-generation nuclear physics with EIC

C. Weiss (JLab) [E-mail], Hall A Collaboration Meeting, JLab, 31-Jan-2020 Jefferson Lab

This overview:

Continuity of physics JLab12 \rightarrow EIC Program evolving, many new ideas

• EIC capabilities

 \rightarrow Talk Higinbotham

Energy, luminosity, polarization, detection

• EIC physics

Nucleon structure in QCD: Sea quarks, gluons Spin/spatial/momentum distributions, correlations Connection with dynamics, χ -symmetry breaking

Nuclear interactions in QCD: Nuclear quarks, gluons Novel probes: Nuclear breakup, heavy quarks Connection with NN forces, SRCs

Hadronization: Current and target fragmentation Jets, color propagation and hadronization in nuclei

Further topics: Meson structure, spectroscopy

• Path forward

EIC: Capabilities

- CM energy $\sqrt{s_{ep}} \sim$ 20-100 (140) GeV DIS in wide range $x \sim 10^{-1}$ – 10^{-3}
- Luminosity $\sim 10^{33}$ – 10^{34} cm⁻² s⁻¹ 10^{2-3} × HERA luminosity Low-rate processes, multivariable analysis
- Polarized proton and light-ion beams
 Polarized D(?), 3He, possibly higher
 Spin observables proton/neutron/nuclei
- Heavy-ion beams

• Next-generation detectors

Central: DIS final states, including PID and vertex detection Forward ion: Exclusive p, nuclear breakup, coherent processes Forward electron: Low- Q^2 tagger for quasireal photoproduction

EIC: Physics topics

• 3D nucleon structure and spin

Sea quark and gluon PDFs, nucleon spin decomposition Spatial distributions GPDs, transverse motion TMDs, spin-orbit effects chiral symmetry breaking "origin of mass", correlations and fluctuations

• QCD in nuclei

Nuclear modification of quark/gluon densities Short-range correlations, emergence of NN interactions from QCD Shadowing, non-linear effects, gluon saturation at small x

• Color propagation and hadronization

Current and target fragmentation, jet evolution and properties Interaction of color charge with matter

[• Further physics topics

Hadron spectroscopy: Heavy flavors, hard production processes Pion and kaon structure Electroweak physics: Charged and neutral-current processes...]

Physics program still evolving! New concepts and measurements proposed in last 5 years EIC User Group Physics-Detector Yellow Reports

Nucleon structure: Dynamical system

• Emergent phenomena of QCD

Relativistic: Particle creation/annihilation Quantum-mechanical: Coherent superposition Strongly coupled: Chiral SB, mass generation

Unique dynamical system!

• Field-theoretical description

Imaginary time $t \to i \tau$: Statistical mechanics, correlation functions, lattice methods

• Particle-based description

High-energy process probes system at fixed light-front time t + z = const

Many-body system: Constituents, motion, size; interactions "expressed" in structure

Nucleon structure: Landscape

• Components probed

x > 0.1 : Valence quarks and gluons, spin/flavor, few-body dynamics

 $x \sim 10^{-1}...10^{-2}$: Sea quarks, gluons, spin/flavor, non-perturbative dynamics

 $x \ll 10^{-2} {\rm :}~{\rm Gluons}$ and singlet sea, radiative dynamics

Measurable quantities

Quark/gluon number densities, spin/flavor dependence: PDFs

Spatial distributions: GPDs

Intrinsic motion, spin-orbit: TMDs

Universal quantities: Matrix elements of QCD operators, renormalization, scale dependence, LQCD

Nucleon structure: Sea quark polarization

• How are sea quarks polarized?

 $q\bar{q}$ pairs from chiral SB? Large $\Delta \bar{u} - \Delta \bar{d}$? Diakonov et al. 96

Mesonic components? Other mechanisms? Thomas et al; Soffer et al.

• RHIC W±: Recent results

EIC White Paper 2012

- JLab12: Valence quark spin Polarized DIS: Hall A 3He; CLAS12 H/D SIDIS: CLAS12, SoLID
- EIC: Sea quark spin/flavor with SIDIS

 $W\sim$ few 10 GeV ensures indep fragmentation

PID for π -K separation

Extensions to be explored: Neutron SIDIS with deuteron + proton tagging Correlations current-target fragmentation $K\text{-}\Lambda$

Recent results

Nucleon structure: Polarized gluon and spin

EIC White Paper 2012

• How is nucleon spin composed of quark/gluon spin and orbital AM?

 $\Delta \Sigma = \int_0^1 dx \; [\Delta q + \Delta ar q](x,Q^2) \quad$ quark spin

7

$$\Delta G = \int_0^1 dx \; \Delta G(x,Q^2)$$
 gluon spin

$$\frac{1}{2}\Delta\Sigma + \frac{1}{2}\Delta G + \text{orbital} = \frac{1}{2}$$
 sum rule

• Polarized gluon density

 Q^2 dependence of polarized DIS $_{\rm EMC/SMC,\ SLAC,\ HERMES,\ COMPASS,\ JLab\ 6/12\ GeV}$

Hard processes in polarized pp at RHIC

• EIC: Polarized gluon density from DIS

Wide kinematic coverage enables measurement of Q^2 evolution, \boldsymbol{x} integral

• JLab12: Quark orbital AM in FFs/GPDs/TMDs Develop concepts and measurements!

Nucleon structure: Spatial distributions

EIC example: Transverse gluon distribution from exclusive J/ψ Other channels: $\phi,\rho,$ DVCS γ

• How are quarks/gluons distributed in transverse space?

Size and "shape" of nucleon in QCD Distributions change with x, spin – dynamics Input for modeling pp collisions at LHC

- GPDs: Unify densities and form factors Exclusive processes $eN \rightarrow e' + M + N'$
- JLab12: Valence quark GPDs DVCS γ : Hall A, CLAS12. π^0 , η : CLAS12 Gluons ϕ , J/ψ : CLAS12, GlueX, Hall C, SoLID
- EIC: Quark/gluon imaging of nucleon

Luminosity for low rates, multidim binning $Q^2 \sim$ few 10 ${\rm GeV}^2$ for QCD mechanism Multiple channels for universality Forward proton detection

8

Nucleon structure: GPDs with EIC

- QCD energy momentum tensor form factors D-term: Quark pressure in nucleon. Extracted from dispersion relation for DVCS amplitude Interpretation: Polyakov 03; Review Polyakov, Schweitzer 19; JLab6 analysis: Burkert, Elouadrhiri, Girod 18
- Quark transversity in GPDs and exclusive processes Pseudoscalars π^0 , η : Helicity flip in meson wave function from χ SB, twist-3 mechanism JLab6: Hall A, CLAS; JLab12: CLAS12 experiments Goldstein, Liuti 08+; Goloskokov, Kroll 11+; CLAS6: Kubarovsky et al 14+

Exclusive high-mass pair production $\rho\rho, \gamma\rho$ Ivanov, Pire, Szymanowski, Teryaev 02+; Enberg et al. 06

- Gluonic form factors in heavy quarkonium production near threshold High-t gluon form factor. Suggested connection with EM tensor, trace anomaly JLab12 J/ψ : GlueX results; approved expts CLAS12, Hall A/C, SoLID Brodsky et al 01; Frankfurt, Strikman 02. Kharzeev et al. 99; Hatta, Yang 18 EIC simulations: Joosten, Meziani 18
- Quantum fluctuations of gluon density in diffractive vector meson production Frankfurt, Strikman, Treleani, CW 08; Schenke, Schlichting 14+

Many new ideas! Feasibility of measurements with EIC should be explored! EIC User Group Physics-Detector Yellow Reports Updates: INT-18-3 "Probing Nucleons and Nuclei in High Energy Collisions", Week 1, presentations+proceedings [Webpage]

Nucleon structure: Transverse motion

• Transverse motion of quarks/gluons

Observed hadron P_T compounded: Nucleon structure \leftrightarrow parton fragmentation Pert. radiation \leftrightarrow nonpert. dynamics

TMD factorization: New concepts Very active field, much progress Collins, Rogers, Ji, Yuan, Qiu, Kang, Prokudin, Sato...

- JLab12: Hadron production at large x P_T distributions, spin-orbit effects in azimuthal dep
- EIC: TMD mechanism and structures

High W for separating rapidity regions

Wide Q^2 range for separating perturbative radiation and nonperturbative dynamics

High luminosity for multidimensional binning

Related topics: Hadron spectroscopy

- Photo/electroproduction of heavy-light or heavy-heavy systems
- $N \rightarrow N^*$ excitation using high- Q^2 exclusive processes Workshop "Spectroscopy program at EIC and future accelerators," ECT* Trento, 2018 [Webpage]

Pion structure

- Pion PDFs/GPDs ↔ chiral SB in QCD
 LQCD quasi/pseudo-PDFs, effective models
- JLab12: Hall A TDIS
- EIC: Peripheral pion knockout

Kinematics $t_N = O(M_\pi^2)$ and $|t_\pi| \gg |t_N|$ isolates production on peripheral pion Strikman, CW 04

Example: Pion's gluon GPD with exclusive J/ψ

Uses central and forward detection Options: $n \to \pi^- p$ or $p \to \pi^+ n$

Other EIC pion measurements: Aguilar et al, EPJA 55, 190 (2019)

Nuclei: Nucleon interactions

- How do nucleon interactions emerge from QCD? "Next step" after exploring nucleon structure
- Expressed in quark-gluon structure of nuclei: Nuclear modifications $A \neq \sum N$, mechanisms depend on x

JLab 12 GeV: Valence quark EMC effect, short-range correlations

EIC: Nuclear gluons, sea quarks, EMC effect, antishadowing, shadowing, approach to saturation

Nuclei: Nuclear gluons

- Nuclear modification of gluons practically unknown at x>0.01Indications of gluon shadowing at x<0.01 in LHC ultraperipheral J/ψ data
- EIC: Measure nuclear gluons

 Q^2 dependence of inclusive eA cross section, F_{2A} and F_{LA}

Heavy flavor production (c, b) as direct probe of gluons Aschenauer et al. PRD 96 114005 (2017). JLab LDRD [webpage]

Nuclei: Breakup and coherent processes

• Deuteron DIS with spectator tagging

Controls nuclear configuration in DIS process: Free neutron structure, EMC effect

EIC: Forward proton/neutron detection JLab LDRD 2014/15 [webpage]

• Coherent nuclear processes

Nuclear GPDs $\langle A | \text{Twist-2} | A \rangle$: Quark/gluon imaging of nucleus Theory/models: Guzey et al., Scopetta et al., Liuti et al.

New approach to nuclear gluon shadowing: Thickness \leftrightarrow impact parameter bGuzey et al 09

EIC: Forward detection of light ions $A \lesssim 12$, veto detection of heavy ions Caldwell, Kowalski 09

Updates: Workshop "Exploring QCD with light nuclei at EIC," CFNS Stony Brook, 2020 [Webpage]

Hadronization: Fragmentation

• How do hadrons emerge from QCD color charge?

Conversion energy \rightarrow matter: Cosmic ray physics, early universe

Dynamical mechanisms: QCD radiation, pair creation by soft fields, $\chi {\rm SB}$

• Fragmentation functions from e^+e^-

Many puzzles: $s\bar{s}$, kaons, baryons

• EIC: New possibilities

Fragmentation functions from ep: Favored \leftrightarrow unfavored, test universality

Target fragmentation: How does nucleon with "color hole" materialize? x, spin dep?

Correlations current-target regions: Multiparton structure New field: QCD theory, MPI in pp at LHC

Hadronization: In matter

• How does fast color charge interact with hadronic matter?

Energy loss, attenutation

Time scales for color neutralization t_N , hadron formation t_F

Cold vs. hot matter? $eA/\gamma A \leftrightarrow \text{jets in } AA$

• EIC: Comprehensive studies

Wide range of energy $\nu=10-100~{\rm GeV}:$ Move hadronization inside/outside nucleus, distinguish energy loss and attenuation

Wide range of Q^2 : QCD evolution of fragmentation functions and medium effects

Hadronization of charm, bottom: Clean probes, QCD predictions

High luminosity: Multidimensional binning

 $\sqrt{s} > 30\,{\rm GeV}:$ Study jets and their substructure in eA

Summary

- Understand hadrons and nuclei as emergent phenomena of QCD Simple microscopic dynamics generates complex structure at multiple scales
- Continuity between EIC and JLab12 physics programs

Much of expertise and tools are "dual use" Programs provide mutual context and strengthen each other

• EIC physics program still evolving

New ideas/concepts/measurements proposed in last < 5 years [\rightarrow see References] Physics "beyond the White Paper" welcome and appreciated!

 Now is the time to get involved in physics and detector studies through Personal initiative and collaboration / JLab EIC group / EIC User Group Yellow Reports