

Don Jones for the MOLLER collaboration

MOLLER EXPERIMENT OVERVIEW

- POLARIZED ELECTRON SCATTERING ON UNPOLARIZED ATOMIC ELECTRONS IN LH2
- ullet Measures parity-violating scattering asymmetry ullet proportional to Q_w^e
- Precise measurement of the weak charge of the electron ($\delta Q_w^e \sim 2.4\%$)
- Precision test of the Standard Model prediction for the running of the weak charge/weak mixing angle ($\delta \sin^2 \theta_W \sim 0.12\%$)
- SEARCH FOR PHYSICS BEYOND THE STANDARD MODEL

PARITY-VIOLATING MOLLER SCATTERING

PV Moller asymmetry from interference terms γZ in Lagrangian $A_{PV} \propto \frac{M_{\gamma} M_{Z}}{M_{\nu}^{2}}$

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$

$$= mE \frac{G_F}{\sqrt{2}\pi\alpha} \frac{4\sin^2\theta}{(3 + \cos^2\theta)^2} Q_W^e$$

PARITY-VIOLATING MOLLER SCATTERING

PV Moller asymmetry from interference terms γZ in Lagrangian $A_{PV} \propto \frac{M_{\gamma} M_{Z}}{M_{\nu}^{2}}$

$$\begin{split} A_{PV} &= \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \\ &= mE \frac{G_F}{\sqrt{2}\pi\alpha} \frac{4\sin^2\theta}{(3 + \cos^2\theta)^2} Q_W^e \end{split}$$

Electroweak corrections in the SM

- couplings run (weak mixing angle/weak charge)
- \bullet A_{PV} loop contributions depend on energy scale

PARITY-VIOLATING MOLLER SCATTERING

tree level 1 loop EW corrections $Q_w^e = 1 - 4\sin^2\theta_w \sim 0.075 \longrightarrow 0.0435$

<u>tree level</u> 1 loop EW corrections

$$A_{PV}(\theta_{CM} = 90^{\circ}) = 67 \text{ ppb}$$
 40 ppb

2 Loop corrections calculations underway!

Hall A collaboration meeting Jan 2020

SENSITIVITY TO NEW PHYSICS

- PRECISE MEASUREMENT OF PV ASYMMETRY PROBES
 CERTAIN MODELS OF NEW PHYSICS AT TEV SCALES
 - Interactions modeled as contact interactions with new physics entering in loops at mass scale Λ and coupling g

Electroweak Interactions at scales much lower than the W/Z mass

Heavy Z's, light (dark) Z's, L-R models, compositeness, extra dimensions, SUSY...

courtesv

over 3 running periods

344 PAC days→8256 hours spread

ACCEPTANCE

- Effective full azimuthal acceptance due to identical particles
- Acceptance from $\theta_{COM} = 50^{\circ} 130^{\circ}$

SPECTROMETER

- DEFINING COLLIMATOR (2)
 UPSTREAM OF MAGNETIC OPTICS
- Comprises an upstream and downstream torus with 7-fold symmetry
- FOCUSES ELASTIC ee ONTO
 DETECTOR ARRAY WHILE
 SEPARATING ELASTIC ep

DETECTORS

- SIX MAIN DETECTOR RINGS OVER FULL AZIMUTH MEASURING DIFFERENT PARTS OF SIGNAL
- INTEGRATING IN CURRENT MODE

• 122 GHz for moller ring

LIQUID HYDROGEN TARGET

- 1.25 m long target
- Design with extensive CFD expected complete by end of year
- Qweak target precursor
 - > 47 ppm → 30 ppm
 - \rightarrow Flow 17 l/s \rightarrow 25 l/s
 - ➤ Cooling 3 kW → 4 kW

• HIGH POLARIZATION (\sim 85%) \rightarrow ROUTINELY ACCOMPLISHED WITH GAAS PHOTOCATHODE

- High polarization (\sim 85%) \rightarrow routinely accomplished with GaAs photocathode
- RAPID HELICITY REVERSAL (~2KHZ) TO REDUCE RANDOM NOISE FROM TARGET DENSITY FLUCTUATIONS
 - HELICITY REVERSAL OF LASER POLARIZATION IN SOURCE PROVIDED BY POCKELS CELL
 - Previous KD*P cell limited to ~100 μ s deadtime for each reversal due to ringing
 - Ringing eliminated and $10~\mu s$ reversal time possible with New RTP crystal cell developed by UVA

- High polarization (\sim 85%) \rightarrow routinely accomplished with GaAs photocathode
- Rapid helicity reversal (~2kHz) to minimize random noise (eg. Target density fluctuations and slow drifts
- HELICITY CORRELATED (HC) DIFFERENCES SUPPRESSED

	PREX-2	MOLLER	
	(achieved)	(required)	
Intensity asymmetry	25 ppb	10 ppb	
Energy asymmetry	$1 \pm 0.6 \text{ ppb}$	< 0.7 ppb	
position differences	$<2\pm2~\mathrm{nm}$	1.2 nm	
angle differences	$< 0.2 \pm 0.4 \mathrm{nrad}$	0.12 nrad	
size asymmetry (quoted)	$< 10^{-5}$	$< 10^{-5}$	

Achieving Moller Requirements

- Injector upgrade including new Wien filter and 200 keV gun with no RF prebuncher
 - Reduced space charge effects (beam halo)
 - Better matching = adiabatic damping
 - No x/y coupling
- 2. RTP cell provides ability to feed back on position and intensity differences

- High polarization (\sim 85%) \rightarrow routinely accomplished with GaAs photocathode
- Rapid helicity reversal (~2kHz) to minimize random noise (eg. Target density fluctuations and slow drifts
- Helicity correlated (HC) Differences suppressed
- CANCELATION OF REMAINING HC FALSE ASYMMETRIES = SLOW REVERSALS

Insertable Halfwave Plate

- Reverses circular polarization relative to PC voltage
- · frequent changes (few hours)
- · some HCBA cancel (many do not)

Injector Spin Manipulation

- · Solenoids + 2 Wien rotations
- ~80 reversals during run phase 2&3 (weekly)

g-2 rotation

- · precession in accelerator arcs
- Modest shift in beam energy (ΔE~100 MeV)
- · intend a few reversals per annual run period

Suppressing:

- electronics pickup
- beam asymmetries
- Spot size asymmetry

Courtesy K. Paschke

POLARIMETRY: COMPTON ~0.4%

Scattering ~3kW circularly polarized green laser from electron beam and detecting both back-scattered γ and e-

- γ -DETECTOR
 - No-threshold integration 200 MHZ
 - OPERATING DURING PREXII-CREX

\bullet E-DETECTOR

- 3RD DIPOLE MOMENTUM ANALYZES SCATTERED ELECTRONS
- SPECTRUM FORMED AS FUNCTION OF DISPLACEMENT FROM BEAM
- SILICON DETECTOR NOT CURRENTLY
 FUNCTIONING BUT PLANS TO REPLACE
 WITH DIAMOND STRIP OR HVMAPS
 (HIGH VOLTAGE MONOLITHIC ACTIVE
 PIXEL SENSORS) DETECTOR
- Most independent from γ but shares laser polarization

POLARIMETRY: MOLLER ~0.4%

- Elastic ee scattering from a Fe foil polarized | | beam
- Parity conserving Moller asym

$$A = \frac{\sigma_{\uparrow\uparrow} - \sigma_{\downarrow\uparrow}}{\sigma_{\uparrow\uparrow} + \sigma_{\downarrow\uparrow}}$$

$$A_{meas} = \sum_{i,j=x,y,z} P_i^t A_{ij} P_j^b$$

Measured asymmetry for us

$$A_{long} = P_z^t A_{zz} P_z^b$$

- Key systematics being studied: Levchuk effect, target polarization, sensitivity to optics
- Lots of lessons learned during PREXII/CREX
- MAY ADD GEM TRACKER TO REDUCE SYSTEMATICS FROM OPTICS UNCERTAINTY

MOLLER Project Team has been very active

- Thanks to the leads who have helped shepherd MOLLER through Several reviews
 - Project Manager: H. Fenker
 - Deputy Project Manager: J. Butler
- Project Engineer: R. Wines
 - Safety Lead: E. Folts
- THE MOLLER COLLABORATION OWES MUCH THANKS TO HOWARD FENKER WHO JUST RETIRED
- GRATEFUL TO STEVE WOODS FOR STEPPING IN AS INTERIM PROJECT MANAGER
- JIM FAST (CURRENTLY AT PNNL) MOVING TO JLAB IN MAY TO BECOME PERMANENT PROJECT
 MANAGER

STATUS

- Underwent internal conceptual design review <u>dec 12-13, 2019</u>
- COMPLETED DIRECTOR'S PRE-CD1 REVIEW JAN 14-16, 2020
- EXPECT DOE CD-1 REVIEW TO BE SCHEDULED SOON
- OPTIMISTIC TO ACHIEVE CD-1 STATUS BY START OF 3RD QUARTER OF FY20

The MOLLER collaboration consists of ~160 authors, 37 institutions from 6 countries

THANK YOU

FIGURE OF MERIT

- A_{pv} varies over acceptance from 40 to 27 ppb $\rightarrow \langle A_{pv} \rangle \sim 32$ ppb
- Cross section minimum at $\theta_{COM} = 90^{\circ}$
- FOM = $\langle A_{PV}^2 R_{ee} \rangle$ maximum at $\theta_{COM} = 90^\circ$ and varies slowly away from 90 deg

SENSITIVITY TO NEW PHYSICS

 New physics can be parametrized by contact interactions in an effective Lagrangian

$$\mathcal{L}_{ ext{eff}} = rac{g^2}{(1+\delta)\Lambda^2} \sum_{i,j=L,R} \, \eta_{ij}^f ar{e}_i \gamma_\mu e_i ar{f}_j \gamma^\mu f_j \, .$$

- VARYING SENSITIVITY TO DIFFERENT COUPLINGS
 - MOLLER PART OF LARGER PROGRAM TO PROBE PHASE SPACE OF DIFFERENT MODELS OF NEW PHYSICS
 - WITH $\frac{g}{4\pi}=1$ as in high energy physics gives MOLLER sensitivity to $\Lambda_{LL}^{ee}=27$ TeV

Model	η_{LL}^f	η_{RR}^f	η_{LR}^f	η_{RL}^f
LL^{\pm}	±1	0	0	0
RR^{\pm}	0	±1	0	0
LR^{\pm}	0	0	±1	0
RL^{\pm}	0	0	0	±1
VV^{\pm}	±1	±1	±1	±1
AA^{\pm}	±1	±1	∓ 1	∓ 1
VA^{\pm}	±1	∓1	±1	∓ 1

https://arxiv.org/abs/1302.6263

RUNNING OF WEAK MIXING ANGLE

- Running of $\sin^2\theta_W$ precisely given by Standard Model and anchored absolutely by Measurements at the Z-pole resonance
- 3 SIGMA DIFFERENCE BETWEEN LEP 1
 AND SLC MEASUREMENTS WITH NEARLY
 EQUAL PRECISION
 - AVERAGE AGREES WELL WITH HIGGS BOSON MASS OF 126 GEV
 - CHOOSING ONE OR THE OTHER HAS RUINS AGREEMENT WITH DIFFERENT IMPLICATIONS FOR HIGH ENERGY DYNAMICS
- MOLLER PROPOSAL TO MEASURE $\delta \sin^2 \theta_W = 0.00028$ has same level of precision and interpretability

Best projected sensitivity to $\sin^2 \theta_W$ at low Q^2 or at collider over next decade.