## HELIUM-3 RESULTS FROM SAGDH EXPERIMENT

Chao Peng (Argonne National Laboratory)

For the Hall A and E97-110 Collaborations

HALL A COLLABORATION MEETING, JANUARY 30, 2020



### 2 OUTLINE

Introduction

• Experiment E97-110

• Experiment Results

### **3** GDH SUM RULE

• Gerasimov-Drell-Hearn (GDH) Sum Rule

$$I^{GDH} = \int_{\nu_{th}}^{\infty} \frac{d\nu}{\nu} \left(\sigma_P(\nu) - \sigma_A(\nu)\right) = 4\pi^2 \alpha \frac{\kappa^2}{M^2} S,$$

- Spin S and anomalous magnetic moment  $\kappa$
- Relate the helicity-dependent photoabsorption cross sections to static properties
- Derived from general principles

### **4** GDH MEASUREMENTS

- Proton, verified: Mainz, Bonn, LEGS (up to  $\nu \sim 3 \text{ GeV}$ )
- Neutron, in progress: Mainz, Bonn, LEGS, HIGS
- Measurements on Deuteron and <sup>3</sup>He

|          | $M[{\rm GeV}]$ | Spin          | $\kappa$ | $I_{ m GDH}[\mu \ { m b}]$ |
|----------|----------------|---------------|----------|----------------------------|
| Proton   | 0.938          | $\frac{1}{2}$ | 1.79     | -204.8                     |
| Neutron  | 0.940          | $\frac{1}{2}$ | -1.91    | -233.2                     |
| Deuteron | 1.876          | 1             | -0.14    | -0.65                      |
| Helium-3 | 2.809          | $\frac{1}{2}$ | -8.38    | -498.0                     |

### 5 GENERALIZED GDH SUM RULES

Generalized for virtual photon via unsubtracted dispersion relation

$$\begin{split} I_{TT}(Q^2) &= \frac{M^2}{4\pi^2 \alpha} \int_{\nu_{th}}^{\infty} \frac{K(\nu, Q^2) \sigma_{TT}(\nu, Q^2)}{\nu^2} d\nu \\ &= \frac{2M^2}{Q^2} \int_0^{x_{th}} \left[ g_1(x, Q^2) - \frac{4M^2}{Q^2} x^2 g_2(x, Q^2) \right] dx. \end{split}$$

$$I_1(Q^2) = \frac{2M^2}{Q^2} \int_0^{x_{th}} g_1(x, Q^2) dx$$
$$= \frac{M^2}{4\pi^2 \alpha} \int_{\nu_{th}}^\infty \frac{K(\nu, Q^2)}{\nu^2 + Q^2} \left[ \sigma_{TT}(\nu, Q^2) + \frac{Q}{\nu} \sigma_{LT}(\nu, Q^2) \right] d\nu.$$

## 6 FIRST MOMENT OF g

• First Moment of g<sub>I</sub>

$$\Gamma_1(Q^2) = \int_0^1 g_1(x, Q^2) dx$$

- Connects to the total spin carried by the quarks in DIS region
- $I_1(Q^2)$  + elastic contribution
- Bjorken Sum Rule

$$\Gamma_1^P(Q^2) - \Gamma_1^N(Q^2) = \frac{g_A}{6} + O(\alpha_s(Q^2)) + O(\frac{1}{Q^2})$$

- g<sub>A</sub>, nucleon axial charge
- Consistent with experimental result in 10%
- Valid in DIS region

### 7 IMPORTANCE OF GENERALIZED GDH SUM RULES

| $\chi$ PT    | Lattice QCD | pQCD             |
|--------------|-------------|------------------|
| $Q^2 = 0$    |             | $Q^2 = \infty$   |
| Hadronic     |             | Partonic         |
| GDH Sum Rule |             | Bjorken Sum Rule |

- Recover the GDH sum rule for real photons  $(Q^2 = 0)$
- Connect with Bjorken sum rule  $(Q^2 = \infty)$
- Relate the moments of the spin dependent structure functions to virtual Compton AMPLITUDE ( $Q^2 > 0$ ), and test the theoretical calculations
  - Baryon Chiral Perturbation Theory (IRBChPT, RBChPT)
  - Lattice QCD
- Study the transition from non-perturbative to perturbative QCD

### 8 EXPERIMENTAL PROGRESS

| Observable                                 | H target     | D target | <sup>3</sup> He target |
|--------------------------------------------|--------------|----------|------------------------|
| $g_1, g_2, \Gamma_1 \& \Gamma_2$           | SLAC         | SLAC     | SLAC                   |
| at high $Q^2$                              |              |          | JLAB E97-117           |
|                                            | JLAB SANE    |          | JLAB E01-012           |
|                                            |              |          | JLAB E06-014           |
| $g_1$ & $\Gamma_1$ at high $Q^2$           | SMC          | SMC      |                        |
|                                            | HERMES       | HERMES   | HERMES                 |
|                                            | JLAB EG1     | JLAB EG1 |                        |
| $\Gamma_1 \& \Gamma_2 \text{ at low } Q^2$ | JLab RSS     | JLab RSS | JLab E94-010           |
|                                            |              |          | JLab E97-103           |
| $\Gamma_1$ at low $Q^2$                    | SLAC         | SLAC     |                        |
|                                            | HERMES       | HERMES   | HERMES                 |
|                                            | JLAB EG1     | JLAB EG1 |                        |
| $\Gamma_1, Q^2 << 1  \mathrm{GeV}^2$       | JLab EG4     | JLab EG4 | JLab E97-110           |
| $\Gamma_2, Q^2 << 1 \text{ GeV}^2$         | JLab E08-027 |          | JLab E97-110           |

### 9 E94-010 RESULTS

### **Neutron**

### **Helium-3**



M.Amarian et al., Phys. Rev. Lett., 89:242301, 2002.

K. Slifer et al., Phys. Rev. Lett., 101:022303, 2008.



### II E97-II0 AT JEFFERSON LAB



Inclusive measurement,  ${}^{3}\overset{\rightarrow}{\text{He}}(\overset{\rightarrow}{e},e')X$ 

- Scattering angles: 6° and 9°
- Polarized electron beam, P<sub>beam</sub> = 75%
- Polarized <sup>3</sup>He target, P<sub>target</sub> = 40%

- Measured the differences of polarized cross sections
  - Parallel (anti-parallel)
  - Perpendicular

Spokespersons: J.-P. Chen, A. Deur, F. Garibaldi Graduate students: J. Singh, V. Sulkosky, J. Yuan, C. Peng, N. Ton

## 12 E97-110 AT JEFFERSON LAB



| Target Cell | Angle          | Beam Energy $(MeV)$ |
|-------------|----------------|---------------------|
| Penelope    | $6.10^{\circ}$ | 2134.2              |
| Priapus     | $6.10^{\circ}$ | 2134.9              |
| Priapus     | $6.10^{\circ}$ | 2844.8              |
| Priapus     | $6.10^{\circ}$ | 4208.8              |
| Priapus     | $9.03^{\circ}$ | 1147.3              |
| Priapus     | $9.03^{\circ}$ | 2233.9              |
| Priapus     | $9.03^{\circ}$ | 3318.8              |
| Priapus     | $9.03^{\circ}$ | 3775.4              |
| Priapus     | $9.03^{\circ}$ | 4404.2              |

13

CROSS-SECTIONS AND CROSS-SECTION DIFFERENCE RESULTS







#### CROSS-SECTIONS AND CROSS-SECTION DIFFERENCE RESULTS



# I6 SECOND PERIOD SYSTEMATICS (V. SULKOSKY)

| Source                               | σ <sub>syst</sub> [%] |
|--------------------------------------|-----------------------|
| Target density                       | 1.6                   |
| VDC Multi-tracks                     | < 1                   |
| Charge                               | 1                     |
| Detector Efficiencies<br>GC,Sh,Scint | 1.5 –2                |
| Yield Stability<br>v-dependent       | < 1.5                 |
| Acceptance                           | 3 – 4                 |
| Beam polarization                    | 3.5                   |
| Target Polarization                  | 3 — 5                 |



1147 MeV @ 9°

ν (MeV)

2135 MeV @ 6°





2845 MeV @ 6°

ν (MeV)

2234 MeV @ 9°



ν (MeV)

3319 MeV @ 9°



v (MeV)













rııctııre fiinctic

### 25 INTERPOLATION TO CONSTANT Q<sup>2</sup>

$$Q^2 = 0.032 \sim 0.23 \text{ GeV}^2$$

Blue: 9 degree

Red: 6 degree

Black points: interpolated data points



### **26 FIRST MOMENTS**



### 27 CROSS CHECK WITH E94 RESULTS



· · · · · · · · · ·

### **28** EXTENDED GDH SUM $(I_{TT})$



### 29 SUMMARY

- Good agreement with Faddeev calculation for the lowest Q<sup>2</sup> data points
- Helium-3 results are consistent with E94 results in the overlapping kinematic range
- Observed the expected turning point at low Q<sup>2</sup> for the GDH sum
- Paper is being drafted

# **THANK YOU**