Inclusive Short-range Correlation Measurements with 3H and 3He at Jefferson Lab

Shujie Li JLab Hall A Collaboration Meeting Jan 30, 2020

Nucleon-Nucleon Short Range Correlation (SRC)

Free nucleon-nucleon potential = Repulsive core + attractive tensor force T = 1, S = 0 :np, pp, nn pairs. The tensor operator $S_{1,2}$ = 0, no attractive tensor force T = 0, S = 1: Deuteron-like np pair.

SRC in Exclusive Scattering

Strong isospin preference from initial state (NOT final state interaction)

Probing 2N SRC at x>1

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

Inclusive electron scattering:

- high statistics
- background suppressed at high Q2

In inclusive (e,e') quasi-elastic scattering, high momentum nucleons dominate the x = Q2/2mv > 1 kinematics

Probing 2N SRC at x>1

High momentum tails should yield constant ratio if SRC-dominated

N. Fomin, et al., PRL 108 (2012) 092052

Inclusive electron scattering:

- high statistics
- background suppressed at high Q2

The x>1 plateau of A/D cross section ratios give the percentage of deuteron-like high momentum pairs in each nucleus

Precision Measurement of the Isospin Dependence in the 2N and 3N Short-range Correlation Region

Spokespersons:

Patricia Solvignon (UNH), John Arrington (ANL), Donal Day (UVa), Douglas Higinbotham (Jefferson Lab), Zhihong Ye (ANL)

Students:

Shujie Li (UNH), Nathaly Santiesteban (UNH), Tyler Kutz (Stony Brook), Leiqaa Kurbany (UNH)

Measurements:

1H, 2H, 3H, 3He, (C12, Ti48) inclusive cross sections at 0.6<xbj<3

Primary Physics Topics:

Check the 2N SRC isospin dependence at 1<x<2, and also 3N momentum sharing configuration.

np	pair dominates:	

no isospin preference:

$$\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} = \frac{\sigma_{np} + \sigma_{n}}{\sigma_{np} + \sigma_{p}} \simeq \frac{\sigma_{np}}{\sigma_{np}} = 1$$

$$\frac{\sigma_{^{3}H}}{\sigma_{^{3}He}} = \frac{2\sigma_{nn} + \sigma_{pp}}{\sigma_{nn} + 2\sigma_{pp}} \xrightarrow{\sigma_{p} \sim 3\sigma_{n}} 0.7$$

Jefferson Lab E12-11-112 (Hall A) :

Precision Measurement of the Isospin Dependence in the 2N and 3N Short-range Correlation Region

Tritium Family Experiments:

2017.12:	Commissioning
2018.2-2018.5:	E12-11-103 MARATHON
2018.4	E12-14-011 e'p (exclusive
SRC)	
2018.5 :	E12-11-112 x>1 (inclusive
SRC) 2.2 GeV b	beam
2018.9-11 :	E12-11-112 x>1 (inclusive
SRC) 4.3 GeV b	beam
2018.11:	E12-17-003 e'K

Jefferson Lab, Hall A **Experiment Configuration**

Beam energy	y:	4.3 GeV	T
Momentum	:	3.54 ,	3.82 GeV
Angle	:	20.88,	17 degree
Q^2	:	1.8 ,	1.4 GeV^2

High Resolution Spectrometer (HRS)

Solid angle:6 msrMomentum resol:1e-4Momentum range:+/- 4.5% wrt central ray

The Gas Target System:

The Gas Target System: special handling

- Maximum current = 22.5 uA on gas cells to minimize the risk of gas leak.
- Endcap(75mg/cm2 Aluminum) being mis-reconstructed into thin gas body (77mg/cm2 Tritium)
- Soling": gas density change along beam path

Charge Normalized Yield

The endcap contamination (after vertex cut) varies from less than 0.1% to 10% depends on spectrometer angle and kinematics.

The Gas Target System: special handling

- Maximum current = 22.5 uA on gas cells to minimize the risk of gas leak.
- Endcap(75mg/cm2 Aluminum) being mis-reconstructed into thin gas body (84mg/cm2 Tritium)
- "Boiling": gas density change along beam path (after reached equilibrium which takes less than 1 second)

Hydrogen in the 2nd Tritium cell (used in the fall 2018, $Q_2 = 1.4$ GeV2 data)

Accelerator energy = 1168 MeV Measured Energy = 1171.48 MeV

gas $H_2O + T_2 \rightarrow HTO + HT$ Liquid, stick to the wall at low temperature

Tritium replaced by hydrogen: 1.6% * 0.0708 g/cm2 * 3 (H2O->HTO) / 0.0851g/cm2 = 4.0 %

Remained tritium density: 0. 0851 g/cm2 * (1-4%) ⇒ 0.0817 g/cm2 ??

In this analysis: use 2+- 2 %

Detector Package:

Data Quality Check

Cuts: track==1, cer>1500,E/P>0.7, abs(th,ph,delta)<60 mrad,40 mrad,5%

Compare Data vs Monte-Carlo Simulation

Radiative Corrections

Gas body:

negligible radiative effect

Endcap:

- Material:
 - Aluminum (rad. Length = 8.897 cm)
- Thickness:
 - Upstream: 0.257mm
 - Downstream : 0.276mm

Radiative correction factor from simulation

Radiative correction almost cancelled in ratio. Calculated with XEMC model (Peaking approximation method for QE) https://userweb.jlab.org/~yez/XEMC/

Uncertainties (Preliminary!)

Quantity	Туре	Uncertainty in Absolute Cross Section	Uncertainty in Ratio	
Beam Energy	correlated	0	0	
Tracking Efficiency	point-to-point	1%	0	
Trigger Efficiency	point-to-point	0.50%	0	
Endcap Contamination	point-to-point	0.15%- $0.75%$	0.21%- $1.05%$	
Acceptance	point-to-point		0-1%	
Radiative Correction	point-to-point		1%	
Charge	normalization	1%	0 -	
Current Induced Density Change	normalization	1%	1.40%	
Tritium Decay	normalization	0	0	
Hydrogen Contamination	normalization	(2%)	(2%)	

Systematic: 1.02-1.7%

Normalization: 1.4-2.5%

Normalized Yield
$$Y(x,Q^2) = \frac{\sum_i C_i(x,Q^2)}{\sum_i Q_i \cdot \rho_l \cdot eff_i \cdot LT_i/PS_i}$$

Combined analysis of data from 2 experiments:

- 1.4 GeV2 data from this experiment (red)
- 1.8 GeV2 data from the exclusive SRC (blue)

Calibration result: 3He/2H ratio

Helium-3/Deuterium ratio

Combined analysis of data from 2 experiments:

- 1.4 GeV2 data from this experiment (red)
- 1.8 GeV2 data from the exclusive SRC (blue)

Calibration result: 3He/2H ratio

Helium-3/Deuterium ratio

Combined analysis of data from 2 experiments:

- 1.4 GeV2 data from this experiment (red)

1.8 GeV2 data from the exclusive SRC (blue)

Helium-3 and Tritium to Deuterium ratios

Helium-3/Deuterium ratio

Error bars represent stat. error and stat.+syst. error. October,2019.

Х_{bj}

-

Tritium/Deuterium ratio

Combined results of data from 2 experiments:

- 1.4 GeV2 data from this experiment (red)
- 1.8 GeV2 data from the exclusive SRC (blue)

Scaling behaviour

Tritium/Deuterium ratio

Q2 Dependence:

Combined results of data from 2 experiments:

- 1.4 GeV2 data from this experiment (red)
- 1.8 GeV2 data from the exclusive SRC (blue)

-

Combined results of data from 2 experiments:

- 1.4 GeV2 data from this experiment (red)
- 1.8 GeV2 data from the exclusive SRC (blue)

Understand the Results:

Configurations	np	рр	nn
# of pairs	NZ/A/(A-1)	Z(Z-1)/A/(A-1)	N(N-1)/2/A/(A-1)
Probability of finding high momentum pairs	р0	pl	pl
Cross section	$\sigma_{n} + \sigma_{p}$	20 [°] p	20° _n

$$\sigma_{SRC} = NZ(\sigma_p+\sigma_n)p_0 + N(N-1)\sigma_np_1 + Z(Z-1)\sigma_pp_1$$

$$inclusive \, rac{\sigma(3H)}{\sigma(3He)} = rac{2(\sigma_n+\sigma_p)\cdot p_0+2\sigma_n\cdot p_1}{2(\sigma_n+\sigma_p)\cdot p_0+2\sigma_p\cdot p_1} \ exclusive \, rac{\#(3H)}{\#(3He)} = rac{2\cdot p_0}{2\cdot p_1+2\cdot p_0}$$

Understand the Results:

Configurations	np	рр	nn
# of pairs	NZ/A/(A-1)	Z(Z-1)/A/(A-1)	N(N-1)/2/A/(A-1)
Probability of finding high momentum pairs	р0	pl	pl
Cross section	σ_{n} + σ_{p}	20 [°] p	20 ⁿ

$$\sigma_{SRC} = NZ(\sigma_p+\sigma_n)p_0 + N(N-1)\sigma_np_1 + Z(Z-1)\sigma_pp_1$$

$$inclusive \, rac{\sigma(3H)}{\sigma(3He)} = rac{2(\sigma_n+\sigma_p)\cdot p_0+2\sigma_n\cdot p_1}{2(\sigma_n+\sigma_p)\cdot p_0+2\sigma_p\cdot p_1} \ exclusive \, rac{\#(3H)}{\#(3He)} = rac{2\cdot p_0}{2\cdot p_1+2\cdot p_0}$$

Elastic cross section ratio

Thank you !