

Quasielastic Analysis ³He/³H x=1

On behalf of the E12-11-112 Collaboration

Nathaly Santiesteban

Hall A Collaboration Meeting 01/30/2018

Precision measurement of the isospin dependence in the 2N and 3N short range correlation region

P. Solvignon, J. Arrington, D. B. Day and D. Higinbotham (Spokepersons)

Precision measurement of the isospin dependence in the 2N and 3N short range correlation region

P. Solvignon, J. Arrington, D. B. Day and D. Higinbotham (Spokepersons)

Motivation

Measure the neutron magnetic form factor using the

 $^{3}He/3H$ cross-section ratios

 $Q^2 < 1$ region has ~8% discrepancy between the Anklin, Kubon data and the CLAS ratio and the Hall A polarized 3He extraction.

Systematic Effects should cancel in the ratio

Past Users Meeting:

Only the Spring LHRS kinematics were presented.

First Pass

Second Pass

- Energy values were taken from HALLA_p with I > 5 mA
- The energy values are corrected by the scaling factor of 1.002 (First Pass) and 1.0025 (Second Pass) given by:

ENERGY MEASUREMENT: Courtesy of Douglas Higinbotham

Optics December 2017

Optics December 2017

Sieve Plane Proj. (tg_X vs tg_Y) for Data set #3

Sieve Plane Proj. (tg_X vs tg_Y) for Data set #7

Sieve Plane Proj. (tg_X vs tg_Y) for Data set #10

Sieve Plane Proj. (tg_X vs tg_Y) for Data set #1

Sieve Plane Proj. (tg_X vs tg_Y) for Data set #5

Sieve Plane Proj. (tg_X vs tg_Y) for Data set #9

+ + + + + + + +0.06 + + ++ + + + +0.04 +++ + 0.02 ++₀₣+ + + + +^{-0.02}**F**+ _0.04**⊭ +** -0.06 -0.08 0.06 0.08 Sieve H [m]

Sieve Plane Proj. (tg_X vs tg_Y) for Data set #0

Sieve Plane Proj. (tg_X vs tg_Y) for Data set #4

Sieve Plane Proj. (tg_X vs tg_Y) for Data set #8

Hydrogen Elastic

Focal Plane Variables

Average Current on Target per Run

Tritium Decay

RHRS Livetime

Trigger (SO&&S2)&&Cherenkov The presale factor was one for all the runs Lower rate runs have a livetime>99%

PID Cuts

Cherenkov > 1500

E/p>0.7

Background Contamination

Background Contamination

RHRS Simulation December 2017

Kinematics Overlap for R26 Data and Simulation

Tritium Yield for all the different Kinematics

Tritium Yield for Lower Q^2 points

Summary

Work done so far:

- Runs organized and clean
 Data calibrated
 Simulation working for all data sets
- \bigcirc Preliminary cross-sections for lower Q^2 kinematics

Near Future

Label systematic contributions
 Preliminary cross-sections for all kinematics
 Theory work

To get to G_M^n

Looking for different models to test!

Thank you!

Q & A