Exploring **Color** Transparency with SBS

Holly Szumila-Vance MIT/GWU 31 Jan. 2019

Color transparency fundamental prediction of QCD

- Introduced by Mueller and Brodsky, 1982
- Vanishing of initial/final state interaction of hadrons with nuclear medium in exclusive processes at high momentum transfer
- Hadron fluctuates to small transverse size (quantum mechanics)
- Maintains this small size as it propagates out of the nucleus (relativity)
- Experiences reduced attenuation in nucleus, color screened (strong force)

Color transparency fundamental prediction of QCD

- Not predicted by strongly interacting hadronic picture → arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, T_A, as a function of the momentum transfer, Q²

$$T_A = \frac{\sigma_A}{A \sigma_N} (\text{nuclear cross section})$$
(free nucleon cross section)

Previous Measurements: Mesons

Enhancements consistent with CT (increasing with Q² and A) observed

Hall C E01-107 pion electro-production

X. Qian et al. PRC81:055209 (2010)

CLAS E02-110 rho electro-production $A(e,e'\rho^0)$

Previous Measurements: Baryons

Previous Measurements: Baryons

A. Leksanov et al. PRL 87 (2001) J. L. S. Aclander et al., PRC 70 (2004)

Transparency in A(p,2p) experiment at Brookhaven:

- observed enhancement in transparency
- inconsistent with CT only
- could be explained by including nuclear filtering or charm resonance

Starting point: recent Hall C experiment (E12-06-107)

CT on ¹²C(e,e'p) in Hall C:

- T = data/PWIA simulation (SIMC, deForest prescription)
- LH2 data for normalization (4%)
- Parallel kinematics (w/r/t q-vector)
- Prelim results show no rise up to Q²=14.3 [GeV/c]²

What we can do with SBS

Proposed kinematics

${f Q}^2 \ ({ m GeV/c^2})$	${f E}_{beam} \ ({f GeV})$	$ heta_{\mathbf{e}^{\prime}}^{lab} \ (\mathbf{deg})$	$p_{\mathbf{e}}^{},$ (GeV/c)	${ heta_{f p}^{lab}} \ ({f deg})$	$p_{\mathbf{p}} \ (\mathbf{GeV/c})$
12.	8.8	44.2	2.4	13.3	7.3
13.5	11.	33.	3.8	14.8	8.1
16.	11.	45.1	2.5	10.7	9.4
18.	11.	65.2	1.4	7.0	10.5

Explore two avenues simultaneously:

- Onset at higher Q²
- Full pT?

Errors shown include statistical ++ 5% systematic

Comparing the kinematics with the BNL results

Proposed kinematics

${f Q}^2 \ ({ m GeV/c^2})$	${f E}_{beam} \ ({f GeV})$	$ heta_{\mathbf{e}^{\prime}}^{lab} \ (\mathbf{deg})$	$p_{ m e}^{}, \ ({ m GeV/c})$	$ extstyle heta _{\mathbf{p}}^{lab} \ \mathbf{(deg)}$	$p_{\mathbf{p}} \ (\mathbf{GeV/c})$
12.	8.8	44.2	2.4	13.3	7.3
13.5	11.	33.	3.8	14.8	8.1
16.	11.	45.1	2.5	10.7	9.4
18.	11.	65.2	1.4	7.0	10.5

GEp-RP setup with GEM tracking on both arms:

• θ_{e} resolution < 1.4 mrad

•

Targets:

- 5% ¹²C production target
- 15 cm hydrogen for normalization
- Al dummy for background subtraction

Requesting:

- 70 uA on hydrogen
- 40 uA on ¹²C

Q^2 $({ m GeV/c^2})$	¹ H counts/hour	^{12}C counts/hour	¹ H time days (2k counts)	¹² C time days (2k counts)
12.	3570	149	0.02	0.6
13.5	840	35	0.1	2.4
16.	735	31	0.1	2.7
18.	126	5	0.7	8*
Total:			1.1	16
				*1k counts

Particle ID

- Electrons:
 - GRINCH detector for pi- rejection
 - Timing hodoscope to reduce accidentals
- Protons:
 - Clean proton tracks: GEM tracking + coordinate detector + HCAL

Physics analysis:

• ¹²C P_{miss} using spectral function (exploring this)

Synergy with other SBS experiments:

- Same setup as GEp-RP
- First two kinematic points overlap with GMn
- LH2 target for calibrations
- 1 beam energy change

Systematics

- Biggest systematic from hydrogen normalization: 2.5%
- Simulation to determine contamination from inelastics (certainly <5% from GMn proposal at highest Q²)
- Determine P_{miss} spectra and compare with spectral function

Summary

- Measuring the onset of CT is a signature for the onset of QCD degrees of freedom in nuclei
- SBS optimized for high Q2 running- extends previous CT measurements to higher Q2
- SBS large acceptance can measure large pT spectrum

Going forward:

- Simulations! carbon QE width and inelastics
- Pmiss spectra, estimate cuts to reduce fringe field effects
- Stay tuned for update at SBS collaboration meeting!

Many thanks for the helpful discussions: Jerry Miller, Mark Strikman, Bogdan, Thia, and Dipangkar