Semi Inclusive Deep Inelastic Scattering with Super BigBite Spectrometer

Eric Fuchey University of Connecticut

Hall A collaboration meeting Newport News, January 31, 2020

Semi-Inclusive DIS and Transverse Momentum Distribution functions

Semi-inclusive Deep Inelastic Scattering (SIDIS):

virtual photon strikes a quark (*large Q*², *W*, *finite x*); Quark hadronizes ($z = E_h/v, P_{hT}$ moderate; $P_{hT}/z \ll Q^2$);

 π^+

Observables accessed w/ harmonics of hadron azimuthal angle ϕ_h ;

Knowledge of lepton, nucleon polarization necessary to access all observables;

Detected hadron carries information on the transverse momentum of partons;

=> **Transverse Momentum Distributions (TMDs)** of partons (Of course, this info is blended in with the parton hadronization – Fragmentation functions)

SIDIS observables and TMDs

TMDs and the nucleon structure

TMDs and the nucleon structure Quark OAM on transversely polarized target

Slide from M. Anselmino, POETIC 6, 2015

Current knowledge about TMDs Selected transversely polarized target data

0.2

х

 10^{-1}

 10^{-2}

0.4

0.6

0.8

Z.

0.5

1.5

 p_{T}^{h} (GeV/c)

Jefferson Lab

1

UCONN

Current knowledge about TMDs Fits over transversely polarized target data

Sivers function:

[Anselmino et al., Phys. Rev. **D 86** (2012) 014028, arXiv:1204.1239]

Collins function:

[Anselmino et al., Phys. Rev. **D 92**, (2015) 114023 arXiv:1510.05389]

Х

SIDIS with Super BigBite Spectrometer Setup for experiment E12-09-018

The SBS SIDIS experiment will use the SBS-BigBite Pair (below)

Most systems will already be built for other SBS experiments (refer to all SBS talks in this session), except for the RICH and the target

SIDIS with SBS A word on Ring Imaging CHerenkov

SIDIS with SBS Another word on the polarized target

Polarized ³He target: (more details in Gordon's talk)

- * 60 cm long, filled with 10 atm of 3He;
- * Metal ends to sustain high beam currents (>40 μ A);

=> Luminosity > 10³⁷cm⁻²s⁻¹

- * SIDIS will nominally require more polarization directions:
 - \rightarrow Proposal: 8 spin orientations, equally spaced at 45-degree intervals perp. to beam direction
 - \rightarrow need at least 4: ±horizontal and ±vertical;
 - \rightarrow vertical polarization the most challenging to obtain may require redesign

SIDIS with SBS Kinematic coverage

2 beam energies, same detector settings: BB at 30 degrees, 1.55m from target SBS at 14 deg, 2.5m (HCal at 8.5 m) $Q^2 > 1 \text{ GeV}^2$, W > 2 GeV, $P_h \ge 2 \text{ GeV}$, $M_x \ge 1.5 \text{ GeV}$, $y \le 0.9$ Q², GeV² 4000 p_T^h, GeV 10⁵ 3500 10⁴ 10⁴ 0.8 + 3500 ф^ч 3000 10⁴ 3000 10³ 10³ 2500 1.0 0.6 2500 10³ 2000 2000 10² 10² 1500 10² 0.4 1500 0.5 1000 1000 10 10 10 500 500 E = 11 GeV 0.2 0. 0.2 0.4 0.6 0.2 0.4 0.6 0.6 0.8 0.2 0.4 0.6 0.8 0.8 0.2 0.4 0.2 0.4 0.6 Х х х X Х 7000 Q², GeV² p_T^h, GeV 6000 ¢ 10⁵ 0.8 10⁴ 10⁴ 6000 4 P 5000 5000 10⁴ 10³ 10³ 1.0 4000 0.6 4000 10³ 3000 10² 10² 3000 0.4 10² 2000 0.5 2000 10 10 10 1000 1000 = 8.8 GeV 0.2 0.0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.2 0.4 0.6 0.8 0.8 0.2 0.4 0.6 0.2 0.4 0.6 х X X х X Plots credit: Andrew Puckett

SIDIS with SBS Trigger projections

Pythia full response with SIDIS (50µA on 60cm ³He) Circa 2016, with updated raw rates

Integrated rates, 1.0 GeV threshold: 3.216e+05 Hz

Integrated rates, 2.5 GeV threshold: 4.950e+06 Hz

Trigger combining ECal and HCal singles, in a 30ns window: 20kHz (too high!)

Particle energies E_p determined with :

E_p = Np.e. * C_Npe2Edep (* HCal_sampl_frac);

Np.e. : number of p.e. collected in PMTs of calos ; *C_Npe2Edep* : coefficient to convert Np.e. to energy deposit ;

Hcal_sampl_frac : sampling fraction of HCal (ratio of E_p /E_dep)

(determination of C_Npe2Edep, Hcal_sampl_frac explained in backup)

12

Either lower luminosity, raise thresholds, or...

SIDIS with SBS Trigger projections

Using BB ECal/ GRINCH correlation in trigger logic lowers the electron rates

Electron arm total rates (Signal + Background): <35 kHz (down from 200kHz) $\Delta t = 30 \text{ ns}$ coincidence with HCal single rates (3 MHz): Total SIDIS trigger rates: <5 kHz (down from $\sim 20 \text{ kHz}$)

January 31 2020

Circa 2016, with updated raw rates

SIDIS with SBS Projected observables

Overall statistical F.O.M:

- * 100 times better than HERMES data;
- * 1000 better than Hall A SIDIS @ 6 GeV;

Great extension of dataset at higher x

SIDIS with SBS Extraction of SIDIS SSA with SBS

Summary

* SIDIS measurements grant access to TMDs, which in turn provide insight on the nucleon content

* The planned SIDIS experiment with SBS on a *transversely polarized helium-3* target will provide a premium insight on the quark orbital angular momentum of the neutron;

* this experiment will increase statistical figure-of-merit of existing measurements by a factor 100 to 1000, and will *greatly extend x coverage*;

* sharing most of its equipment with the other SBS experiments, and requiring "modest" dedicated effort (see below), it is also reasonably cost effective in terms of development;

* dedicated efforts necessary (=TODO):

- RICH DAQ update and commissioning;
- polarized target (esp vertical polarization);
- GRINCH integration into BigBite trigger logic;

Thank you for your attention !

TMDs and observables in SIDIS

General Expression for SIDIS Cross Section at twist 3: Bacchetta et al., JHEP 02, 093 (2007)

 $\frac{\alpha^2}{xyQ^2}\frac{y^2}{2(1-\epsilon)}\left(1+\frac{\gamma^2}{2x}\right)\left\{F_{UU,T}\right\} + \epsilon F_{UU,L} +$ $d\sigma$ $dxdydzd\phi_h d\phi_S dp_T^2$ $\sqrt{2\epsilon(1+\epsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}+\epsilon\cos(2\phi_{h})F_{UU}^{\cos2\phi_{h}}+$ $\lambda_e \sqrt{2\epsilon(1-\epsilon)} \sin \phi_h F_{LU}^{\sin \phi_h} +$ $S_{\parallel} \left[\sqrt{2\epsilon(1+\epsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \overline{\epsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h}} \right] +$ $S_{\parallel}\lambda_{e}\left[\sqrt{1-\epsilon^{2}}F_{LL}\right]+\sqrt{2\epsilon(1-\epsilon)}\cos\phi_{h}F_{LL}^{\cos\phi_{h}}\right]+$ $S_{\perp} \begin{bmatrix} \sin(\phi_{h} - \phi_{S}) F_{UT}^{\sin(\phi_{h} - \phi_{S})} \\ \bullet \text{ Sivers} \\ \bullet \text{ Collins} \\ \bullet \sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} \\ \bullet \text{ ``Pretzelosity''} \end{bmatrix}$ $\left| \sqrt{2\epsilon(1+\epsilon)} \left(\sin \phi_S F_{UT}^{\sin \phi_S} + \sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right) \right| +$ $S_{\perp}\lambda_{e}\left[\sqrt{1-\epsilon^{2}\cos(\phi_{h}-\phi_{S})}F_{LT}^{\cos(\phi_{h}-\phi_{S})}\right]+$ $\sqrt{2\epsilon(1-\epsilon)} \left(\cos\phi_S F_{LT}^{\cos\phi_S} + \cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right) \right\}$

NN Jefferson Lab

January 31 2020

UCONN

- SIDIS structure functions depend on x, Q^2 , z, p_T
- U, L, T subscripts indicate unpolarized, longitudinally and transversely polarized beam, target, respectively
- S = nucleon spin
- $\lambda =$ lepton helicity
- Eight terms survive at leading twist; the rest are twist-3 (M/Q suppressed)
- Azimuthal angle dependence caused by spin-orbit effects.

• All leading-twist TMDs can be separately extracted from the azimuthal modulations of SIDIS cross section with polarized beam (longitudinal) and polarized target (longitudinal and transverse)

$$\begin{array}{rcl} \gamma & = & \displaystyle \frac{2Mx}{Q} \\ \\ \epsilon & = & \displaystyle \frac{1-y-\frac{1}{4}\gamma^2 y^2}{1-y+\frac{1}{2}y^2+\frac{1}{4}\gamma^2 y^2} \end{array}$$

SBS Summer Collaboration Meeting 2019

Slide taken (shamelessly) from Andrew, from last SBS collaboration meeting...

8/6/19

3

Jefferson Lab

18

SIDIS with SBS Experimental setup: Electron arm

BigBite:

* Same detector package as for Form Factors experiments (see Brian and William's talks for more details);

* Calorimeter threshold 1 GeV; * Trigger logic will have to use calo combined with GRINCH.

SIDIS with SBS Experimental setup: Hadron arm

SBS:

- * 5 planes of UVA GEM (momentum measurement);
- * RICH (particle ID);
- * HCal (energy measurement+trigger 2 GeV equiv. thr);
- * optional Large Angle Calorimeter in front of HCal for better energy resolution

