Duke/JLab Workshop on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions, March 2010

Workshop summary paper: M. Anselmino *et al*. EPJA 47, 35 (2011)

M. Diehl summary of INT program M²⁵/A⁹nselmino *et al*. INT summary pa^He^{Gao} The European Physical Journal

ecognized by European Physical Societ

volume 47 · number 3 · march · 2011

Hadrons and Nuclei

From: Transverse-momentum–dependent parton distribution/fragmentation functions at an electron-ion collider by M. Anselmino et al.

D Springer

Study both Proton and Neutron

ion momentum ∞ Ζ $P_N \propto$ Z/ANot weighted by Cross section.

Flavor separation, Combine the data

the lowest achievable x limited by the effective neutron beam and the P_T cut

Projections with Proton (Collins)

• 11 + 60 GeV 36 days $L = 3 \times 10^{34} / cm^2 / s$ • 11 + 100 GeV 36 days $L = 1 \times 10^{34} / cm^2 / s$ $2x10^{-3}$, Q²<10 GeV² 4x10⁻³, Q²>10 GeV² • 3 + 20 GeV 36 days $L = 1 \times 10^{34} / cm^2 / s$ $4x10^{-3}$, Q²<10 GeV² 5x10⁻³, Q²>10 GeV²

Results on kaons also

Projections with Proton (Sivers)

Results on kaons also

Proton π^+ (z = 0.3-0.7)

Projections with ³He (neutron)

combine ³He and D 120 fb⁻¹

Calculations from A. Prokudin, B. Ma

³He π^+ (4-D) ¹² GeV Jlab 11x100 GeV

High P_T Physics

- TMD: P_T << Q
- Twist-3 formulism: Λ_{QCD} << P_T
- Unified picture in Λ_{QCD} << P_T << Q
 ➢ Ji et al. PRL 97 082002 (2006)

 $gT_{q,F}(x,x) = -\int d^2k_\perp \frac{|k_\perp|^2}{M} f_{1T}^{\perp q}(x,k_\perp^2)|_{\rm SIDIS}$

 P_T weighted integral Asymmetries

$$A_{UT}^{J\sin(\phi_h - \phi_S)} = \frac{\int dP_T J(P_T) A_{UT}^{\sin(\phi_h - \phi_S)} \cdot \sigma_{UU}}{\int dP_T \sigma_{UU}}$$

L. Gamberg' talk @ Spin Physics, Transverse II

Z. Kang's talk @ Spin Physics , Transverse II

Kang, Qiu, Vogelsang and Yuan: arxiv: 1103.1591

High P_T kinematics

High P_T : hadron momenta dramatically increase require high momentum PID, large polar angular coverage

11/25/19

P_T dependence (High P_T) on p of π^+ 120 fb⁻¹

Higher center-of-mass energies

blue: 140 GeV, black 50 GeV, red 15 GeV, integrated lumi: 30 fb⁻¹

Higher center-of-mass energies

11/25/19

H. Gao

D-meson Production at EIC

• Dominated by tri-gluon subprocesses (Kang Qiu PRD 2008)

- Four tri-gluon distributions (Kang, Koike, Tanaka)
- Closely related to gluon Sivers function
- Intrinsic charm is not important at large P_{T}
- Single transverse Spin Asymmetries
 - Twist-3 effect, fall off as $1/P_T$
 - Proportional to tri-gluon functions
 - Any small SSA is discovery of tri-gluon distribution functions.
 - Differentiate different tri-gluon functions with D-meson and Dbarmeson

X. Qian

144 Days @ L = 3x10³⁴ on Proton

10 GeV > Momentum > 0.6 GeV Polar angle > 10 degree $0.9 > \gamma > 0.05; Q^2 > 1GeV^2,$ $P_T > 1GeV; z > 0.15$ Include decay of kaon and pion Additional 60% efficiency 80% polarization Sqrt(2) for angular separation. Dilution factor due to other processes and accidental pion and kaons.

2x2 bins in x and Q^2 .

Gluon Sivers Distribution

• Focus on charm production back-to-back D Dbar

 $\gamma^* g \to QQ$

 Approximate a factor of 50 suppression compare to the single D meson production at 11x60 GeV

H. Gao

- \succ Explore other decay channels
 - -> Larger branching ratio
- > Higher luminosity (projection W=60 GeV, 100 fb⁻¹)

 $\gamma^* p \to D^0 \overline{D}{}^0 + X$

Markus Diehl, Bo-Wen Xiao

What's next?

- Update previous studies with the latest taking into account both the designs of the accelerator(s) and the associate detectors and to inform the design
- Update studies with the latest from theory/phenomenology/ modeling
- Carry out studies of systematic uncertainties including model dependence and studies of physics impact, similar to what have been done for the SoLID SIDIS
- Provide requirements on the detector design: kinematic reach, resolutions, PID,
- Other related studies, such as cross section measurements, fragmentation functions, etc.