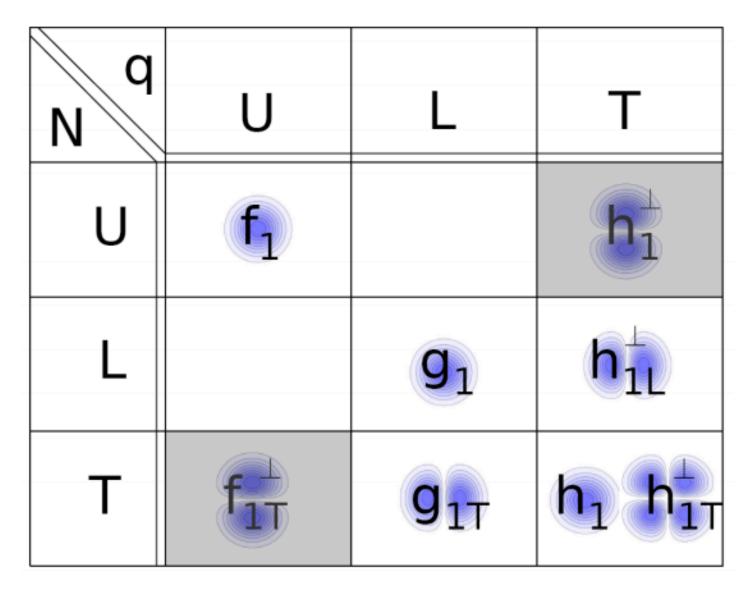
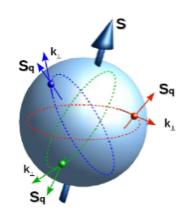
General remarks and physics case for Λ physics and BM via dihadrons at JLEIC

Anselm Vossen


General remarks (my perspective)

• What:

- Formulation of the physics program of interest to the Jlab SIDIS community
- Ideally extend on EIC white paper and other studies (e.g. Duke Workshop 2010)
- Maybe revisit golden/silver channels from white paper
- How
 - Use software by EIC SW group, established infrastructure
- Output
 - Ideally identical in format to the parallel EIC effort → <u>need communication and</u> <u>representation</u>
 - Produce document with Physics plans→Merge with EIC yellow paper


Physics plans – Spin orbit correlation in Hadronization

Transverse momentum dependent distributions (TMDs)

In addition to the spin-spin correlations can have spin momentum correlations!

Spin-orbit correlations

FF picture currently much more sparse --here single hadrons

Observables:

z: fractional energy of the quark carried by the hadron

 $p_{h,T}$: transverse momentum of the hadron wrt the quark direction: TMD FFs

Parton polarization \rightarrow	Spin averaged	longitudinal	transverse
Hadron Polarization 🕹			
spin averaged	$D_1^{h/q}(z, p_T) = \left(\bullet \rightarrow \bullet \right)$		$H_1^{\perp h/q}(z, p_T) = \left(\stackrel{\bullet}{\bullet} \rightarrow \bigcirc \right) - \left(\stackrel{\bullet}{\bullet} \rightarrow \bigcirc \right)$
longitudinal			
Transverse (here Λ)			

Polarization in the final states \rightarrow Spinorbit correlations in hadronization

z: fractional energy of the quark carried by the hadron

 $p_{h,T}$: transverse momentum of the hadron wrt the quark direction: TMD FFs

Parton polarization \rightarrow	Spin averaged	longitudinal	transverse
Hadron Polarization 🗸			
spin averaged	$D_1^{h/q}(z, p_T) = \left(\bullet \rightarrow \bigcirc \right)$		$H_1^{\perp h/q}(z, p_T) = \left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right) - \left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array} \right)$
longitudinal		$G_1^{\Lambda/q}(z, p_T) = \left(\bullet \bullet \to \bullet \right) - \left(\bullet \bullet \to \bullet \bullet \right)$	$H_{1L}^{h/q}(z, p_T) \left[\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right] - \left[\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right]$
Transverse (here Λ)	$D_{1T}^{\perp\Lambda/q}(z,p_T) = \left(\bullet \rightarrow \bullet\right)$		$H_1^{\Lambda/q}(z, p_T) = \left[\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right] - \left[\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right]$
		$G_{1T}^{h/q}(z,p_T) = \left[\bullet \to \bullet \bullet \right] - \left[\bullet \to \bullet \bullet \right]$	$H_{1T}^{\perp\Lambda/\mathbf{q}}(\mathbf{z},\mathbf{p}_T) = \left[\mathbf{t} \rightarrow \mathbf{p} \right] - \left[\mathbf{t} \rightarrow \mathbf{p} \right]$

- Analogue → similar to PDFs encoding spin/orbit correlations
- Determining final state polarization needs self analyzing decay (Λ)
- Gluon FFs similar but with circular/linear polarization (not as relevant for e+e-)

Specific Plans – Lambda physics

- Λ^{\uparrow} polarization measurement
 - First observation in SIDIS
 - Universality? (T-odd, chiral-even)
 - Flavor structure of polarizing FF (with He^3)
- Further topics
 - Λ^{\uparrow} clean access to transversity
 - Spin orbit correlation in fragmentation (worm-gear FFs...)

SIMILAR: OAM IN THE FINAL STATE \rightarrow DI-HADRON FRAGMENTATION FUNCTIONS

Additional Observable:

 $\vec{R} = \vec{P_1} - \vec{P_2} :$

The relative momentum of the hadron pair is an additional degree of freedom:

the orientation of the two hadrons w.r.t. each other and the jet direction can be an indicator of the quark transverse spin

Parton polarization \rightarrow	Spin averaged	longitudinal	transverse		
Hadron Polarization 🗸					
spin averaged	$D_1^{h/q}(z, M)$	8	$H_1^{\perp h/q}(z, p_T M, (Ph), \theta)$ 'Di-hadron Collins'		
longitudinal					
Transverse	Type equation here.	G1 [⊥] (z,M,P _h ,θ)= T-odd, chiral-even →jet handedness QCD vaccum strucuture	H ₁ *(z,M, (P _h), θ)=. T-odd, chiral-odd Colinear		
Relative momentum of hadrons can carry away angular momentum					
• Partial wave decomposition in $\theta \rightarrow Needs$ to be mapped completely!! (no information yet)					
• Energy dependence? (\rightarrow VM fractions)					
• Relative and total angular momentum \rightarrow In principle endless tower of FFs					

Specific Plans – di-hadrons, application BM

- We expect that TMD di-hadron FFs can access the Boer-Mulders function w/o contributions from Cahn effect (and some higher order effects)
- BM is a 'silver' channel in the White paper
- If BM can be isolated that way, it presumably also makes it easier to break the pT convolution of FF and TMD.

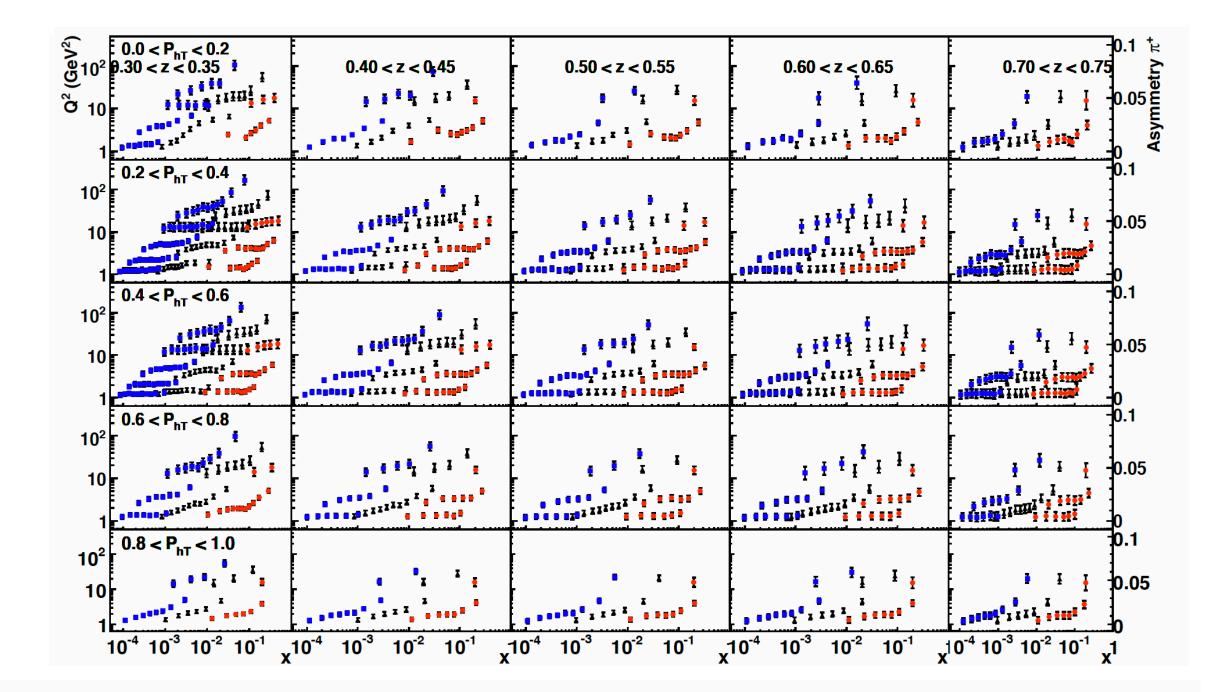
Energy/Lumi

- Currently planned for JLEIC 22 -98 GeV, lumi driven (at least for higher energies) by GPD program
- In general look at full energy range, each channel will have different requirements
- Some general remarks
 - Lower energies needed for overlap with existing experiments
 - Higher energies
 - +offer lever arm from TMD evolution, overlap with perturbative regime, larger transverse momentum range, better current/target separation, sea quarks etc
 - questions about TMD evolution (still something to measure?) Don't want to end up in purely
 perturbative regime
- For the channels proposed here
 - Λ^{\uparrow}
 - Low-mid energies might be best for overlap with Belle, transversity extraction, staying in nonperturbative regime
 - Highest energy might be good to explore twist-3 framework
 - Di-hadrons
 - For BM low-mid could be best. Highest energies might wash out the effect

Generators

- Make use of other EIC efforts
 - Most likely focus on Pythia (Most EIC sims seem to use 6.4.28)
 - Possible Pythia TMD extensions?
- Optional: For di-hadrons renew effort in TMDGen

Peoplepower


- Anselm Vossen
- Chris Dilks (PD) \rightarrow will attend MIT kick-off meeting
- Future students

Summary & Outlook

• Planning for regular meetings every *n* weeks?

Coverage for sqrtS=150, 50,15 GeV

Deliverables	Observables	What we learn	Phase I	Phase II
Sivers $+$ unp.	SIDIS with Tran.	Quant. Interf.	valence+sea	3D Imaging of
TMD quarks	polarization/ion;	Multi-parton &	quarks, overlap	quarks & gluon;
and gluon	di-hadron (di-jet)	Spin-Orbit	with the fixed	$Q^2~(P_{\perp})$ range
	heavy flavor	correlations	target exp.	QCD dynamics
Chiral-odd	SIDIS with Tran.	3 rd basic quark	valence+sea	$Q^2 (P_{\perp})$ range
functions:	polarization/ion;	PDF; novel	quarks, overlap	for detailed
Transversity;	di-hadron	hadronization	with the fixed	QCD dynamics
Boer-Mulders	production	effects	target exp.	

Table 2.1. Science Matrix for TMD physics: 3D structure in transverse momentum space: golden measurements (upper part) and silver measurements (lower part).