





# **Update on the Neutral Particle Spectrometer (NPS)**

Vladimir V. Berdnikov on behalf of the NPS collaboration

HallC Users Meeting Jefferson Lab; January 28-29 2020; Newport News; Virginia

#### **NPS collaboration**

• Consist of members involved in NPS construction plus additional collaborators on the four experiments

| 1. | Ibrahim | Albayrak 🖾 | (Akdeniz Univ/Turkey) |  |
|----|---------|------------|-----------------------|--|
|----|---------|------------|-----------------------|--|

- 2. Salina Ali M (CUA)
- 3. Moskov Amaryan 🖾 (ODU)
- 4. Vladimir Berdnikov 🖾 (CUA)
- 5. William J. Briscoe 🖾 (GWU)
- 6. John R.M. Annand 
  <sup>™</sup> (U Glasgow)
- 7. Arshak Asaturyan M (AANL, YerPhi)
- 8. Vincenzo Bellini M (INFN-Catania)
- 9. Kai Brinkmann 🗹 (Giessen U.)
- 10. Marie Boer 🗠 (CUA)
- 11. Alex Camsonne 
  <sup>II</sup> (JLab)
- 12. Marco Carmignotto 🖾 (JLab)
- 13. Donal Day M (UVa)
- 14. Dipangkar Dutta 🗹 (MSU)
- 16. Rolf Ent (JLab)
- 17. Michel Guidal ☑ (IPN-Orsay)
- 18. David J. Hamilton M (U Glasgow)
- 19. Tanja Horn 🗠 (CUA)
- 20. Charles Hyde (Old Dominion University)
- 21. Dustin Keller 🗹 (UVa)
- 22. Cynthia Keppel 🖾 (JLab)
- 23. Mitchell Kerver M (ODU)
- 24. Edward Kinney M (U. of Colorado)
- 25. Greg Kalicy M (CUA)
- 26. Ho-San Ko 🖾 (IPN-Orsay)

| 27. Mireille Muhoza 🖾 (CUA)                   |   |
|-----------------------------------------------|---|
| 28. Arthur Mkrtchyan 🖾 (AANL, YerPhl)         |   |
| 29. Hamlet Mkrtchyan 🖾 (AANL, YerPhl)         |   |
| 30. Carlos Munoz-Camacho 🖾 (INP-Orsay)        |   |
| 31. Pawel Nadel-Turonski (Stonybrook)         |   |
| 32. Gabriel Niculescu 🖾 (James Madison U.)    |   |
| 33. Rainer Novotny 🗹 (Giessen U.)             |   |
| 34. Rafayel Paremuzyan 🖾 (NH)                 |   |
| 35. Ian Pegg 🖾 (CUA)                          |   |
| 36. Hashir Rashad 🖾 (Old Dominion University) |   |
| 37. Julie Roche 🖾 (Ohio University)           |   |
| 38. Oscar Rondon 🖾 (UVa)                      | 1 |
| 39. Simon Sirca 🖭 (U Ljubljana)               |   |
| 40. Alex Somov ☑ (JLab)                       |   |
| 41. Igor Strakovsky 🗠 (GWU)                   |   |
| 42. Vardan Tadevosyan 🗹 (AANL, YerPhi)        |   |
| 43. Richard Trotta 🖾 (CUA)                    |   |
| 44. Hakob Voskanyan 🖾 (AANL, YerPhl)          |   |
| 45. Rong Wang 🖾 (IPN-Orsay)                   |   |
| 46. Bogdan Wojtsekhowski 🖾 (JLab)             |   |
| 47. Steve Wood 	 (JLab)                       |   |
| 48. Simon Zhamkochyan 🖾 (AANL, YerPhl)        |   |
| 49. Carl Zorn 🖾 (JLab)                        |   |
| 50. Jixie Zhang 🖾 (UVa)                       |   |



## **NPS Scientific program overview**

- The neutral-particle spectrometer (NPS) offers **unique scientific capabilities** for studies of the transverse spatial and momentum structure of the nucleon in Hall C
- Five experiments have been fully approved by the JLab PAC to date:

NPS ERR 2019

- E12-13-007: Measurement of Semi-inclusive  $\pi^0$  production as Validation of Factorization
- E12-13-010: Exclusive DVCS and  $\pi^0$  Cross Section Measurements in Hall C
- E12-14-003: Wide-angle Compton Scattering at 8 and 10 GeV Photon Energies
- E12-14-005: Wide Angle Exclusive Photoproduction of  $\pi^0$  Mesons
- E12-17-008: Polarization Observables in Wide-Angle CS at large s, t and u
- One conditionally approved experiment
  - C12-18-005: Timelike Compton Scattering off a transversely polarized proton
- Total of **160 PAC days** approved: ~ **20%** of all **approved beam time in Hall C**!
- Scheduling request for E12-13-010/E12-13-007 (run group) has been submitted

## **Motivation of NPS Experiments: Validation of Reaction mechanism**

- To extract the rich information on nucleon structure encoded in **GPD** and **TMD**s one needs to show that the scattering process is understood
  - Neutral final states offer unique advantages

E12-13-010 and E12-13-007





- E12-13-010 provides precision measurements of the deeply-virtual Compton scattering cross section at different beam energies to extract the real part of the Compton form factor without any assumptions. Also provides  $\pi^0$  L/T cross section data to validate the exclusive meson production mechanism if  $\sigma$ L large, access to regular GPDs, if  $\sigma$ T large, then access to transversity may become possible
- E12-13-007 measure the basic semi-inclusive neutral-pion cross section in a kinematical region where the QCD factorization scheme is expected to hold, crucial to validate the foundation of this cornerstone of 3D transverse momentum imaging 4

## **Combine NPS with Compact Photon Source (CPS)**

- Much progress in imaging nucleon structure can be made with electron-scattering reactions, yet experiments with high-energy photons play a unique complementary role
- Small scattering probabilities of exclusive reactions demand high-intensity photon beams
- Understanding strengthened by imaging longitudinally-polarized and transversely-polarized nucleons





CPS enables a gain of a factor of 30 in figureof-merit! Enables a new suite of high-energy photon scattering experiments to image and understand the dynamical nucleon structure

- E12-17-008 investigate the mechanisms behind RCS provides crucial insight into the nature of exclusive reactions and proton structure
- C12-18-005 first fundamental test of the universality of the GPDs, as the GPDs extracted from TCS should be comparable with those extracted from the analogous space-like (electron)
   <sup>5</sup> scattering process DVCS

#### **The Neutral Particle Spectrometer**

#### Supported by NSF MRI PHY-1530874



**Small angles (6° -23°) configuration** 

Large angles (23°-57.5°) configuration

6

- ~25 msr neutral particle detector consisting of ~1080 PbWO4 crystals (30x36 matrix) in a temperature controlled frame including gain monitoring and curing systems
- HV distribution bases with built in amplifiers for operation in a high rate environment
- Essentially deadtime less digitizing electronics to independently sample the entire pulse form for each crystal Jlab developed Flash ADCs
- A vertical-bend sweeping magnet with integrated field strength of 0.3 Tm to suppress an eliminate charged background
- Cantilevered platforms off the Super High Momentum Spectrometer (SHMS) carriage to allow for remote rotation. For NPS angles from 6 to 23 degrees, the platform will be on the left of the SHMS carriage for NPS angles 23-57.5 degrees it will be on the right
- A beam pipe with as large opening/critical angle for the beam exiting the target/scattering chamber region as possible to reduce beamline-associated backgrounds

#### **The NPS sweep magnet**

Supported by NSF MRI PHY-1530874



| Max Current (Amp)   | 990       |
|---------------------|-----------|
| R @ 20°C (Ohm)      | 0.1       |
| ΔV Max (V)          | 110       |
| Cooling medium      | LCW       |
| ΔΡ (psi)<br>ΔΤ (°C) | 130<br>30 |
| Corrector Max (Amp) | 520       |

- Normal resistive iron dominated magnet provided by CUA and ODU
- Fully assembled and being tested at JLAB
- Completed fringe field mapping at 25% of full current next: compare to calculation
- Planning full current tests in Hall C will there be an opportunity this year (2020)?



## **Calorimeter conceptual design**



- 30x36 (1080) PbWO4 crystals of size: 2x2x20 cm3
- Hamamatsu R4125 PMTs with custom active HV bases provided by Ohio U.
- Design completed at IPN Orsay
  - Crystals placed in a 0.5 mm-thick carbon frame to ensure good positioning
  - PMTs accessible from the back side to allow for maintenance
  - Calibration and radiation curing with blue LED light though quartz optical fibers (concept originally designed by Yerevan)





Human size detector!

### **Magnetization studies**

100

-100

10

- Found that the magnetic field is large at PMT locations for NPS at small angles. (~200 Gauss)
- Adjusted NPS design concept to include
  - a mu-metal mesh around PMTs (30mm in front, 27.5mm towards PMT dynode)
    - Inside 0.5mm thick

Side view

- Outside 1.5mm thick
- A soft iron (1006) shield box with 10mm thickness ٠
- With the new shielding concept the magnetic field is negligible at the **PMT** location
  - Field is below 1 Gauss along the 8cm from the PMT front face



20





9

#### Front/back view

40

40



## **Background simulations**

- Simulations of energy and dose distribution of background in NPS shows that particles with energy <10 MeV constitute ~20% of the total energy deposited in the detector – need shielding, magnet field strength doesn't help
- With the new NPS shielding 0.2Tm is enough to reduce the charged particle backgrounds



#### **NPS calorimeter: PbWO4 crystals**

#### Supported by NSF MRI PHY-1530874

- Only two vendors of PbWO4 crystals available worldwide
- SICCAS/China: failure rate ~30% of crystals produced in 2014-19 due to major mechanical defects
- CRYTUR/Czech Republic: Strict quality control procedures – so far 100% of crystals accepted
- NPS calorimeter crystal coverage:
  - CRYTUR crystals will cover 78.7% of the active volume
  - SICCAS crystals will cover 21.3% (edges)







## **PbWO4 crystal properties and performance tests**



- Primary quality assurance of the crystals:
  - Precise dimension measurements and visual inspections
  - Optical transmittance measurements
  - Light yield measured using a radioactive source Na-22 and 2in PMT inside of thermo-controlled darkbox
- Crystal/glass beam test program in HallD:
  - Installed the 3x3 prototype behind the PS (2018,2019,2020)
  - Energy resolution measurement
  - Readout chain optimization
  - Glass-ceramic scintillator tests
  - Streaming readout
  - Crystal test stand 12 crystal measured at the same time (2020)
  - Studies of crystal defects, light guides, cookies and etc.

#### **3x3** Prototype

Photon

beam





Beam dump



## **Beam test program with 12x12 NPS prototype**



- Built a 12x12 detector for more detailed studies compared to quick checks with the 3x3 prototype
  - Allows for studies of energy resolution in wide energy range, stability, rate dependence, etc.
  - But, not as flexible as 3x3 since cannot run in parasitic mode and has to be installed in the beamline requires scheduling, crane installation, alignment, slow controls, integration to data stream...
- Beam test program completed in 2019
  - Initial results show energy resolution:  $\sim 2.83\%/E + 2.23\%/\sqrt{E} + 0.73\%$
  - Ongoing studies to improve linearity
  - Preparing publication on beam test results – to be submitted to NIMA in next few months

#### Detector design major components:

- 12x12 Matrix (140 crystals)
- NPS HV divider
- 250 fADC readout
- Environment control:
  - Temperature, humidity, light sensors
- Monitoring system consisting of LED and α-source
- Moving platform



#### <u>Outlook</u>

- NPS experiments (E12-13-007, E12-13-010, E12-14-003, E12-14-005) passed ERR in May 2019 and beam time scheduling request has been submitted
- Sweeper magnet ready for full current test in Hall C
- Frame scheduled to be on-site at the end of summer 2020
- >700 PMT's received and spot checked 25% no rejections
- All (1100) active bases assembled
- Calorimeter assembly scheduled for Fall 2020
- Details will be discussed at NPS collaboration meeting Feburary 3 2020

| Igenda                                                                                                |                      |
|-------------------------------------------------------------------------------------------------------|----------------------|
| February 2020 - CC RM L210A                                                                           |                      |
| 9:00 -9:30 - Welcome - NPS History, Overview and Meeting Goals - Tanja Horn (CUA)                     |                      |
| 9:30 -9:50 - NPS in Hall C – Design Status (platforms, moves) - Mike Fowler/Paulo Medeiros (JLab)     |                      |
| 9:50 -10:10 - Magnet Status - Field Mapping - Charles Hyde (ODU)                                      |                      |
| 10:10 -10:40 - Detector Frame and Infrastructure - Emmanuel Rindel (IPN Orsay)                        |                      |
| BREAK                                                                                                 |                      |
| 11:00 -11:30 - Crystal characterization - Vladimir Berdnikov (CUA)                                    |                      |
| 11:30 -11:45 - HV Divider Status - Julie Roche (Ohio U.)                                              |                      |
| 11:45 -12:00 - HV Divider Optimization and Results - Fernando Barbosa (JLab)                          |                      |
| 12:00 -12:30 - Simulations and software development - Ho-San Ko (IPN Orsay)                           |                      |
| LUNCH BREAK                                                                                           |                      |
| 13:30 -13:50 - Hall C Infrastructure – HV, Electronics, DAQ - Brad Sawatzky (JLab)                    |                      |
| 13:50 -14:10 - Hall C Infrastructure - Patch Panels, Cabling, LCW, Power, etc - Joe Beaufait (JLab)   |                      |
| 14:10 -14:30 - NPS Installation Planning - Walter Kellner (JLab)                                      |                      |
| 14:30 -15:00 - NPS Assembly Plan Discussion (magnet, platform and rails, detector, cabling,)          |                      |
| 15:00 -15:30 - NPS Calorimeter Assembly Discussion                                                    |                      |
| BREAK                                                                                                 |                      |
| 16:00 -16:30 - NPS To-Do List Discussion (Gain Monitoring, Calibrations, Software) - Hamlet Mkrtchyan | (ANSL)               |
| 16:30 -17:30 - TCS Conditional Approved Experiment - Plans and To-Do List - Marie Boer, Dustin Keller | r, Vardan Tadevosyar |
| 17:30 - Adjourn                                                                                       |                      |

#### **Summary**

- 3D Hadron Imaging, encapsulated in the GPDs and TMDs, is one of the key programs at the 12 GeV Jlab
- NPS allows for validation of the exclusive electroproduction reaction mechanism required for accessing the GPDs and TMDs
- Adding a real photon beam (Compact Photon Source) allows for accessing complementary highenergy photoproduction processes

## **General requirements of the NPS experiments**

#### Ee=6.6,8.8,11 GeV

|                          | E12-13-010        | E12-13-007        | E12-14-003             | E12-14-005             |
|--------------------------|-------------------|-------------------|------------------------|------------------------|
| Angular resolution(mrad) | 0.5-0.75          | 0.5-0.75          | 1-2                    | 1-2                    |
| Energy resolution(%)     | (1 <b>-</b> 2)/√E | (1 <b>-</b> 2)/√E | 5/√E                   | 5/√E                   |
| Photon energies          | 2.6-7.6           | 0.5-5.7           | 1.1-3.4                | 1.1-3.4                |
| Luminosity (cm-2cm-1)    | ~1038             | ~1038             | ~1.5x1038              | ~1.5x1038              |
| Acceptance               | 60%/25msr         | (10-60)%/25msr    |                        |                        |
| Beam current (uA)        | 5-50              | 5-50              | ~40;+6%<br>Cu radiator | ~40;+6%<br>Cu radiator |
| Targets                  | 10cm LH2          | 10cm LH2          | 10cm LH2               | 10cm LH2               |

- Suppress and eliminate charged background sweeping magnet
- Resolution for photon detection high light yield; fine granularity
- Expected rates: up to 1MHz- fast response PMT, active base with gain to reduce anode current
- Radiation hardness- integrated doses 20-30kRad, monitoring and curing systems