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Overview
Introduction to parton distribution functions (PDFs) 

Methodology of global QCD analysis
— maximum likelihood vs. Monte Carlo sampling

Current analyses focus on simultaneous extraction of
unpolarized and polarized PDFs & fragmentation functions
using Bayesian MC methods (“JAM19” …)
— impact of SIDIS data on strange quark PDF

— simultaneous analysis of polarized & unpolarized PDFs
— combined analysis of experiment + lattice QCD data
— MC analysis of pion PDFs
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Historical focus at JLab
— large-x PDFs,  DIS-resonance transition (“CJ15”)



Parton distribution functions (PDFs) are light-cone 
correlation functions
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In            gauge, in fast-moving frame PDF has a probabilistic 
interpretation as a particle density
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Parton distributions in hadrons

�3



�AB!CX(pA, pB) =
X

a,b

Z
dxa dxb fa/A(xa, µ) fb/B(xb, µ)

⇥
X

n

�n
s (µ) ⇥̂

(n)
ab!CX (xapA, xbpB , Q/µ)

process-independent parton distribution functions 
characterizing structure of bound state A

fa/A

A B

C

a b�̂

X

xa xb

Parton distributions in hadrons

Inclusive high-energy particle production AB ! C X

QCD factorization:  separation of hard (perturbative, calculable)
from soft (nonperturbative, parametrized) physics

Collins, Soper, Sterman (1980s)
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Parton distributions in hadrons
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Most information on PDFs obtained from lepton-hadron 
deep-inelastic scattering (DIS) 

structure function given as convolution of hard
Wilson coefficient with PDF 
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Spin-dependent PDFs are defined similarly

Parton distributions in hadrons
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Universality of PDFs allows data from many different processes 
(DIS, SIDIS, weak boson/jet production in pp, Drell-Yan …) to be analyzed 
simultaneously

Global QCD analysis

PDFs are not directly measured, but inferred from
observables involving convolutions with other functions

Extraction of PDFs is challenging because usually there exist 
multiple solutions —  “inverse problem”

d�

DIS ⇠
X

q

e

2
q q(x)

d�

SIDIS ⇠
X

q

e

2
q q(x)Dh

q (z)

d�SIA ⇠
X

q

e2q Dh
q (z)

`N ! `0 X

`N ! `0 hX

` ¯̀! hX



Analysis of data requires estimating expectation values E
and variances V  of  “observables”     (functions of PDFs) 
which are functions of parameters 

O

E[O] =

Z
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Z
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Z
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Using Bayes’ theorem,  probability distribution      given byP

“Bayesian master formulas"
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in terms of the likelihood function      and priors L ⇡

Global QCD analysis
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is a Gaussian form in the data, with      function�2

with priors          and  evidence⇡(~a) Z
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Z
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Z tests if e.g. an n-parameter fit is statistically different
from (n+1)-parameter fit
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Global QCD analysis



maximize probability distribution

P(~a|data) ! ~a0

E[O(~a)] = O(~a0) V [O(~a)] ! Hessian

if     is linear in parameters, and if probability is
symmetric in all parameters
O

need more robust (Monte Carlo) approach
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Standard method for evaluating E, V  via maximum likelihood

In practice, since in general                           , maximum 
likelihood method sometimes fails

E[f(~a)] = f(E[~a])
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Global QCD analysis



JAM — iterative, multi-step Monte Carlo
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f(x) = N x

↵(1� x)� P (x)

traditional functional form for distributions

but sample large parameter space
sampler

priors

fit

fit

fit

posteriors

robust determination of
PDF uncertainties

iterate until convergence
(posteriors = priors)

polynomial, neural net, …

Global QCD analysis
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          MC technology 
developed by Nobuo Sato



Spin-averaged nucleon PDFs

Collaboration between JLab and CTEQ started ~ 2008 with
initiative from Thia Keppel & Tony Thomas to fund postdoc
position (      Alberto Accardi ) to analyze impact of JLab data
on global QCD analysis — using established fitting technology
(      Jeff Owens)

Importance of high-precision data in high-x, low-W region
for constraining x      1 PDFs

A lot of data, a lot of phenomenological experience 
      single-fit technology usually sufficient for finding     minima�2



nuclear effects in deuterium obscure free-neutron structure 

Spin-averaged PDFs in CJ15

|eq|Absence of free-neutron data and smaller       of d quarks
limit precision of d-quark PDF, especially at high x
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testing ground for
nucleon models
in x     1 limit
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significant reduction of
PDF errors with new
JLab tagged neutron & 
FNAL W-asymmetry data

extrapolated ratio at x = 1
d/u ! 0.09± 0.03

does not match any model…

upcoming experiments at JLab
(MARATHON, BONuS, SoLID) will 
determine d/u up to x ~ 0.85
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Spin-averaged PDFs in CJ15



From perturbative QCD expect symmetric      sea generated
by gluon radiation into      pairs (if quark masses are the same)

qq̄
qq̄

From chiral symmetry of QCD (important at low energies) should have 
consequences for antiquark PDFs in the nucleon (at high energies) 

+
PV PVp n p

⇡+ (ud̄)

d̄ > ū

since u and d quarks nearly degenerate,
expect flavor-symmetric light-quark sea

d̄ ⇡ ū

Light quark sea asymmetry

A. Thomas (1984)



Asymmetry spectacularly confirmed in high-precision DIS
and Drell-Yan experiments
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Light quark sea asymmetry
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Light quark sea asymmetry
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but significant uncertainty from nuclear corrections,
semileptonic branching ratio uncertainty

Strange quark PDFs more difficult to constrain, since fewer 
observables directly sensitive to it

tension with HERMES semi-inclusive K-production data
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ū+ d̄
⇠ 0.2� 0.5

Strange quarks

 20

Traditionally s-quark PDF extracted from dimuon production 
in (anti)neutrino-nucleus DIS (W+s ! c / W�s̄ ! c̄)
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Strange quarks
Since SIDIS depends on both PDFs and fragmentation functions,
need to fit both kinds of distributions simultaneously!

unpolarized fixed-target DIS on p, d (SLAC, BCDMS, NMC),
    HERA collider data (runs I & II)

such an analysis has never been attempted before…

52 shape parameters + 41 “nuisance” parameters for systematic
uncertainties (data normalizations)

Drell-Yan (Fermilab E866), jet production (CDF, D0)

SIDIS pion & kaon multiplicities for deuteron (COMPASS)

e  e   annihilation (DESY, LEP/CERN, SLAC, KEK)+ -

953 fits to 4366 data points (2680 DIS,  992 SIDIS,  250 DY,  444 SIA)

PDFs

FFs

JAM2019 analysis



JAM 2019 analysis

valence & light sea quark broadly in agreement with other groups

mean reduced   
            
for all data
�2 = 1.3

suppression of strange PDF compared to other extraction

Sato, Andres, Ethier, WM (2019)
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SIDIS + SIA data force strange to kaon FF to be larger
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fully constrained solutions

solutions with large s(x)
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SIA data at large z
strongly disfavor
small strange     K  FF

fully constrained solutions

solutions with large s(x)
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vital role played by SIDIS + SIA data in constraining strange PDF
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Strange quarks
Parity-violating DIS measurements (e.g. SoLID at JLab12) will allow 
strange contribution to be isolated, when combined with
e.m. p and n DIS data at low/intermediate x
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V x A term also sensitive to s� s̄
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order of magnitude greater sensitivity of      to strange PDF�Z
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Nucleon helicity PDFs

Jefferson Lab Angular Momentum Collaboration began ~ 2013 
as an attempt to coordinate JLab spin structure function 
analysis across Halls A, B & C

With fewer data and smaller kinematic reach, soon realized  
that a Monte Carlo sampling approach was needed

de-correlate starting and final fit parameters,
avoid getting stuck in local     minima�2

MC analysis spearheaded by Nobuo Sato
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First application of JAM MC — spin structure
First JAM MC analysis studied impact of JLab data on spin 
structure of the nucleon
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X
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=
N*,N’* q, X

Σ

γ∗M

N’*N

Σ

Inclusive DIS data cannot distinguish between q and q_

semi-inclusive DIS sensitive to �q & �q̄

⇠
X

q

e

2
q

⇥
�q(x)Dh

q (z) +�q̄(x)Dh
q̄ (z)

⇤

fragmentation functions

Global analysis of DIS + SIDIS data gives different sign for
strange quark polarization for different fragmentation functions!

necessity to fit fragmentation functions simultaneously
with PDFs…

for “DSS” FFs,   but�s > 0 �s < 0 for “HKNS” FFs
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(gp1 , gn1 )

�u+�ū, �d+�d̄

2 observables             can determine up to 2 unknowns,
e.g.                            — sea quarks from      dependence Q2

First application of JAM MC — spin structure



larger s     K  fragmentation cf. HKNS suggests 
less negative     .        �s
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ū

⇡+

Q2 = 5 GeV2

0.2 0.4 0.6 0.8 1z

0.1

0.2

0.3

0.4

s+

u+

s

K+

Ethier, Sato, WM (2017)

DSS

HKNS

favored                 &                FFs well constrainedu+=u+ū s+=s+s̄

Analysis of single-inclusive e  e   annihilation data for + - ⇡, K

production (from DESY, CERN, SLAC & KEK) from Q ~ 10 GeV to M    Z

First application of JAM MC — spin structure
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First simultaneous extraction of spin PDFs and FFs,
fitting polarized DIS + SIDIS (HERMES, COMPASS)  and SIA data

     slightly > 0 at high x, 
consistent with zero
�s

consistent with zero
�s��s̄ & �ū��d̄

Ethier, Sato, WM (2017)
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Simultaneous spin PDF + FF analysis

�u+ ��d+
?
= gA ⌘ F +D

�u+ +�d+ � 2�s+
?
= a8 ⌘ 3F �D
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weak sensitivity to         from DIS data & evolution�s+

—  negative peak at x ~ 0.1 induced by fixing b ~ 6 - 8

Ethier, Sato, WM (2017)
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Simultaneous spin PDF + FF analysis

�s+—  SU(3) pulls        to generate moment ~ -0.1
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Simultaneous spin PDF + FF analysis
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Statistical distribution of lowest moments (axial charges)

triplet charge       consistent with SU(2) valuegA

hint of SU(3) breaking in octet charge     a8 Bass, Thomas (2010)

�s = �0.03(10)less negative                       gives larger total helicity �⌃ = 0.36(9)
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Ethier, Sato, WM (2017)

Simultaneous spin PDF + FF analysis



JAM-lattice



Recent progress in extracting x dependence of PDFs in
lattice QCD from matrix element of nonlocal operator

PDFs in lattice QCD

h(z, Pz) = hP | (0, z) �zW(z, 0) (0, 0) |P i

q(x, µ) =

Z 1

�1

dy

|y|
e
C

⇣
x

y

, µ, Pz

⌘
eq(y, Pz, µ)

=

Z 1

�1
dy eiyPzz eq(y, Pz)

quasi-PDF      related to light-cone PDF via matching kernel eCeq

Conflicting results on sign of           asymmetryd̄� ū
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d̄ > ū d̄ < ū
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Fit lattice observable directly within JAM framework

PDFs in lattice QCD
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from present lattice data
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u� d

u� d
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PDFs in lattice QCD

Fit lattice observable directly within JAM framework
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ū
�

�
d̄)

Bringewatt, Sato, WM (2019)

better agreement between lattice 
and experiment for polarized PDFs
(within larger uncertainties)
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JAM-pion
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Larger gluon fraction in the pion
than without LN constraint

PDFs in the pion
MC analysis combining pQCD with chiral EFT to fit        Drell-Yan
+ leading neutron electroproduction data from HERA
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PDFs in the pion
MC analysis combining pQCD with chiral EFT to fit        Drell-Yan
+ leading neutron electroproduction data from HERA
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origin of the          asymmetry
in the proton
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chiral effective theory relates 
asymmetry to structure of pion
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PDFs in the pion

Patrick Barry et al.  (2019)
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1− z1 1− z2 1− z3 1− zn

1 z1 z1z2 z1z2z3 z1z2 · · · zn

effect of resummation on phenomenology?

x     1 behavior of pion PDF is controversial:                 or ⇠ (1� x) (1� x)2 ?

Aicher, Schafer, Vogelsang (2010)

Hard scattering coefficient function kinematically
enhanced when z     1 because of gluon emissions

with resummation: more consistent with ~ (1� x)2

no resummation: more consistent with ~ (1� x)



PDFs in the pion
New analysis examines whether large-     DY data can be 
simultaneously described with     -integrated DY + HERA LN data

qT
qT

2

FIG. 1. Lowest order interaction for the Drell-Yan process,
consisting of a quark and antiquark annihilating into a lep-
tonic pair through intermediate photon production.

However, these ”leading order” interactions are rela-
tively insensitive to the gluon, since processes directly
including a gluon only appear starting from order ↵

s

in-
teractions. This is essentially when the presence of some
transverse momentum of the produced photon necessi-
tates the recoiling of a gluon. These interactions include
three specific channels: the qq channel, the qg channel,
and the gq channel as shown in Figure 2 [4].

Clearly, the order ↵0
s

process is only dominant or rel-
evant when p

T

⇡ 0 (in the CM frame), so the probing
of higher order interactions occurs in the analysis of p

T

dependent data. For these data, the order ↵
s

processes
become the leading order contribution to the cross sec-
tion at high p

T

. Thus, there is a potential for greater
sensitivity toward and further constraining of the gluon
PDF at large x values by including p

T

dependent data in
the experimental analysis of the Drell Yan process.

This work attempts to fit p
T

-dependent cross sec-
tion data from the Drell-Yan process to extract a fur-
ther constrained image of the gluon PDF. Taking p

T

dependent cross section measurements from experiment
E615 (pion collisions with tungsten atoms), we fitted the
data through combining both pT independent and de-
pendent gluon PDFs for comparison with valence and
sea quark PDFs. Such further constraining of the gluon
PDF can lead to improved imaging of the gluon PDF in
the pion across all momentum fractions as well as provide
a greater understanding of the full p

T

spectrum and the
general structure of hadrons.

METHODS AND THEORY

The Complete Drell-Yan Cross Section

The complete Drell-Yan cross section can be written
generally as a sum of four terms [2]:

FIG. 2. Higher order Feynman diagrams for Drell-Yan that
include the recoiling of a gluon. There are three channels that
constitute such an interaction: qq (top), qg (middle), and gq

(bottom).

d�

dQ2dydp2
T

= W + FO �ASY +O(
m2

Q2
)

(1)

The W term dominates at low x values, and is deter-
mined by the behavior of transverse momentum distri-
butions (TMDs). The fixed order (FO) term dominates
at high x values, where perturbative QCD and collinear
factorization are theoretically thought to hold. Finally,
the asymptotic term is a general function meant to ap-
proach the FO term at low x and the W term at high x,
thus allowing for the dominance of the relevant terms to
be expressed properly mathematically. The last term is
an error term. [2]
Given that this analysis focuses on high p

T

values, it
is expected that only the fixed term will be needed to

large-     photon requires hard gluon
to recoil against — sensitivity to
gluon PDF in pion at large x!

qT

Nina Cao et al.  (2019)
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first time that one has been able to
describe      spectra (    > 2.9 GeV)
spectra in terms of collinear PDFs!

q

qT qT



Outlook

New paradigm in global analysis — simultaneous determination
of collinear distributions (unpolarized & polarized PDFs and FFs)
using Monte Carlo sampling of parameter space 

Technology developed in collinear sector will be applied to 
global QCD analysis of transverse momentum dependent (TMD) 
distributions — map out full 3-d image of nucleon
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Incorporate new tools/technologies, e.g., machine learning 
— LDRD (“Empirically Trained Hadronic Event Regenerator”) and
CNF (“QCD theory and machine learning for global analysis”) projects 
— collaboration with computer science/AI researchers


