

Hall C Collaboration Meeting, Jefferson Lab January 29, 2020

Parton distribution functions at Jefferson Lab

Wally Melnitchouk

— Jefferson Lab —

JLab Angular Momentum (JAM) Collaboration

CTEQ-Jefferson Lab (CJ) Collaboration

E.

https://www.jlab.org/jam

https://www.jlab.org/cj

Overview

- Introduction to parton distribution functions (PDFs)
- Methodology of global QCD analysis
 - maximum likelihood vs. Monte Carlo sampling
- Historical focus at JLab
 - large-x PDFs, DIS-resonance transition ("CJ15")
- Current analyses focus on simultaneous extraction of unpolarized and polarized PDFs & fragmentation functions using Bayesian MC methods ("JAM19" ...)
 - impact of <u>SIDIS</u> data on strange quark PDF
 - simultaneous analysis of <u>polarized & unpolarized</u> PDFs
 - combined analysis of experiment + <u>lattice</u> QCD data
 - MC analysis of <u>pion</u> PDFs

- ten alstrigutions in had bhs Parton discribution tunctions (PQfs) are light cone correlation functions
- unt tes (the provide (the string of the provide prov
- $\begin{array}{c} free \ quark \ scattering \in \mathcal{G} \\ quark \ scattering \quad \mathcal{G} \\ quark \ scattering \quad \mathcal{G} \\ \end{array}$

The first of the state of the second state of twists hiqher $\frac{\partial \psi}{\partial t} = \frac{\partial \psi}{\partial t} =$ $\psi \ G_{\mu\nu}\gamma^{\nu} \ \psi$

Parton distributions in hadrons

 $\blacksquare Inclusive high-energy particle production AB \rightarrow CX$

Collins, Soper, Sterman (1980s)

→ QCD factorization: separation of hard (perturbative, calculable) from soft (nonperturbative, parametrized) physics

$$\sigma_{AB\to CX}(p_A, p_B) = \sum_{a,b} \int dx_a \, dx_b \, \underbrace{f_{a/A}(x_a, \mu)}_{\dots} \underbrace{f_{b/B}(x_b, \mu)}_{\dots} \times \sum_n \alpha_s^n(\mu) \, \hat{\sigma}_{ab\to CX}^{(n)} \left(x_a p_A, x_b p_B, Q/\mu\right)$$

→ process-independent parton distribution functions $f_{a/A}$ characterizing structure of bound state A

Parton distributions in hadrons

Spin-dependent PDFs are defined similarly

$$\Delta q(x) = q^{\uparrow}(x) - q^{\downarrow}(x)$$

= $\int_{-\infty}^{\infty} d\xi^{-} e^{-ixP^{+}\xi^{-}} \langle P | \overline{\psi}(\xi^{-}) \gamma^{+} \gamma_{5} \mathcal{W}(\xi^{-}, 0) \psi(0) | P \rangle$

measured in polarized lepton-nucleon DIS

polarized structure function in terms of spin-dependent PDFs

$$g_1(x_B, Q^2) = \frac{1}{2} \sum_q e_q^2 \int_{x_B}^1 \frac{dx}{x} \Delta C_q\left(\frac{x_B}{x}, \alpha_s\right) \Delta q(x, Q^2)$$
$$\longrightarrow \frac{1}{2} \sum_q e_q^2 \Delta q(x_B, Q^2) \text{ at leading order}$$

Universality of PDFs allows data from many different processes (DIS, SIDIS, weak boson/jet production in *pp*, Drell-Yan ...) to be analyzed simultaneously

$$\rightarrow \ell N \rightarrow \ell' X \qquad d\sigma^{\text{DIS}} \sim \sum_{q} e_q^2 q(x)$$

$$\rightarrow \ell N \rightarrow \ell' h X \qquad d\sigma^{\text{SIDIS}} \sim \sum_{q} e_q^2 q(x) D_q^h(z)$$

$$\rightarrow \ell \bar{\ell} \rightarrow h X \qquad d\sigma^{\text{SIA}} \sim \sum_{q} e_q^2 D_q^h(z)$$

- Extraction of PDFs is challenging because usually there exist <u>multiple solutions</u> — "inverse problem"
 - → PDFs are not directly measured, but inferred from observables involving convolutions with other functions

Analysis of data requires estimating expectation values E and variances V of "observables" O (functions of PDFs) which are functions of parameters

$$E[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \,\mathcal{O}(\vec{a})$$
$$V[\mathcal{O}] = \int d^{n} a \,\mathcal{P}(\vec{a}|\text{data}) \left[\mathcal{O}(\vec{a}) - E[\mathcal{O}]\right]^{2}$$

"Bayesian master formulas"

■ Using Bayes' theorem, probability distribution \mathcal{P} given by $\mathcal{P}(\vec{a}|\text{data}) = \frac{1}{Z} \mathcal{L}(\text{data}|\vec{a}) \pi(\vec{a})$

in terms of the likelihood function $\mathcal L$ and priors π

Likelihood function

$$\mathcal{L}(\text{data}|\vec{a}) = \exp\left(-\frac{1}{2}\chi^2(\vec{a})\right)$$

is a Gaussian form in the data, with χ^2 function

$$\chi^{2}(\vec{a}) = \sum_{i} \left(\frac{\text{data}_{i} - \text{theory}_{i}(\vec{a})}{\delta(\text{data})} \right)^{2}$$

with priors $\pi(\vec{a})$ and evidence Z

$$Z = \int d^n a \, \mathcal{L}(\text{data}|\vec{a}) \, \pi(\vec{a})$$

 \rightarrow Z tests if *e.g.* an *n*-parameter fit is statistically different from (*n*+1)-parameter fit

- Standard method for evaluating E, V via maximum likelihood
 - \rightarrow maximize probability distribution

 $\mathcal{P}(\vec{a}|\text{data}) \rightarrow \vec{a}_0$

 \rightarrow if \mathcal{O} is linear in parameters, and if probability is symmetric in all parameters

 $E[\mathcal{O}(\vec{a})] = \mathcal{O}(\vec{a}_0), \quad V[\mathcal{O}(\vec{a})] \to \text{Hessian}$

$$H_{ij} = \frac{1}{2} \frac{\partial \chi^2(\vec{a})}{\partial a_i \partial a_j} \Big|_{\vec{a} = \vec{a}_0}$$

- In practice, since in general $E[f(\vec{a})] \neq f(E[\vec{a}])$, maximum likelihood method sometimes fails
 - \rightarrow need more robust (Monte Carlo) approach

$$E[\mathcal{O}] \approx \frac{1}{N} \sum_{k} \mathcal{O}(\vec{a}_{k}), \quad V[\mathcal{O}] \approx \frac{1}{N} \sum_{k} \left[\mathcal{O}(\vec{a}_{k}) - E[\mathcal{O}] \right]^{2}$$

- JAM iterative, multi-step Monte Carlo
 - \rightarrow traditional functional form for distributions

$$f(x) = N \, x^{\alpha} (1-x)^{\beta} \, P(x)$$
 polynomial, neural net, ...

but <u>sample large parameter space</u>

→ iterate until convergence (posteriors = priors)

→ robust determination of <u>PDF uncertainties</u>

Spin-averaged nucleon PDFs

- Collaboration between JLab and CTEQ started ~ 2008 with initiative from Thia Keppel & Tony Thomas to fund postdoc position (→ Alberto Accardi) to analyze impact of JLab data on global QCD analysis — using established fitting technology (→ Jeff Owens)
- Importance of high-precision data in high-x, low-W region for constraining $x \rightarrow 1$ PDFs
- A lot of data, a lot of phenomenological experience \rightarrow single-fit technology usually sufficient for finding χ^2 minima

Spin-averaged PDFs in CJ15

Ubiquity of proton F₂ data (SLAC, BCDMS, NMC, HERA, JLab, ...) provides strong constraints on u-quark PDF over large x range

 Absence of free-neutron data and smaller |e_q| of d quarks limit precision of d-quark PDF, especially at high x
 nuclear effects in deuterium obscure free-neutron structure

Spin-averaged PDFs in CJ15

- Valence *d/u* ratio at high *x* of particular interest
 - \rightarrow testing ground for nucleon models in $x \rightarrow 1$ limit
 - $d/u \rightarrow 1/2$ SU(6) symmetry
 - $d/u \rightarrow 0$ $S = 0 \ qq$ dominance (color-hyperfine interaction)
 - $d/u \rightarrow 1/5$ $S_z = 0 \ qq$ dominance (perturbative gluon exchange)
 - $d/u \rightarrow 0.18 0.28$ DSE with qq correlations

considerable uncertainty
 at high x from deuterium
 corrections (no free neutrons!)

 $F_2^d(x,Q^2) = \int_x dy \ f(y,\gamma) \ F_2^N(x/y,Q^2)$ $f(y,\gamma) = \int \frac{d^3p}{(2\pi)^3} \ |\psi_d(p)|^2 \ \delta\left(y - 1 - \frac{\varepsilon + \gamma p_z}{M}\right) \times \frac{1}{\gamma^2} \left[1 + \frac{\gamma^2 - 1}{y^2} \left(1 + \frac{2\varepsilon}{M} + \frac{\vec{p}^2}{2M^2} (1 - 3\hat{p}_z^2)\right)\right]$

Spin-averaged PDFs in CJ15

- Valence *d/u* ratio at high *x* of particular interest
 - → significant reduction of PDF errors with new JLab tagged neutron & FNAL W-asymmetry data

 $d + \bar{u} \rightarrow W^- \rightarrow \ell^- + \bar{\nu}$

Accardi, Brady, WM, Owens, Sato (2016)

- → extrapolated ratio at x = 1 $d/u \rightarrow 0.09 \pm 0.03$ does not match any model...
- → upcoming experiments at JLab (MARATHON, BONUS, SoLID) will determine d/u up to $x \sim 0.85$

Light quark sea asymmetry

From perturbative QCD expect symmetric $q\bar{q}$ sea generated by gluon radiation into $q\bar{q}$ pairs (if quark masses are the same)

→ since u and d quarks nearly degenerate, expect flavor-symmetric light-quark sea $\bar{d} \approx \bar{u}$

From chiral symmetry of QCD (important at low energies) should have consequences for antiquark PDFs in the nucleon (at high energies)

A. Thomas (1984)

Light quark sea asymmetry

Asymmetry spectacularly confirmed in high-precision DIS and Drell-Yan experiments

 strongly suggested role of chiral symmetry and pion cloud as central to understanding of nucleon's quark structure

$$(\bar{d} - \bar{u})(x) = (f_{\pi} \otimes \bar{q}_{\pi})(x)$$

pion distribution pion PDF

Light quark sea asymmetry

Intriguing suggestion of sign change in $\overline{d} - \overline{u}$ at high x

Accardi, Keppel, S.Li, WM, Niculescu (x2), Owens (2020)

$$\Delta \equiv \frac{1}{2} \left(u_v - d_v \right) - \frac{3}{2x} \left(F_2^p - F_2^n \right)$$
$$\xrightarrow{\text{LO}} \bar{d} - \bar{u}$$

alternative definition (equivalent at LO) $\widetilde{\Delta} \equiv u - d - \frac{3}{x}(F_2^p - F_2^n)$

Light quark sea asymmetry Intriguing suggestion of sign change in $\overline{d} - \overline{u}$ at high x

$$\Delta \equiv \frac{1}{2} \left(u_v - d_v \right) - \frac{3}{2x} \left(F_2^p - F_2^n \right)$$
$$\xrightarrow{\text{LO}} \bar{d} - \bar{u}$$

suggestion that $F_2^p - F_2^n$ data supports sign-change hypothesis Peng et al. (2014)

- → global analysis shows that $F_2^p F_2^n$ data can be well described with <u>no sign change</u> in $\overline{d} - \overline{u}$
- \rightarrow apparent effect is due to higher-order (NLO) α_S corrections!

Strange quarks

- Strange quark PDFs more difficult to constrain, since fewer observables directly sensitive to it
- Traditionally *s*-quark PDF extracted from dimuon production in (anti)neutrino-nucleus DIS $(W^+s \rightarrow c / W^-\bar{s} \rightarrow \bar{c})$
 - → but significant uncertainty from nuclear corrections, semileptonic branching ratio uncertainty
 - \rightarrow tension with HERMES semi-inclusive *K*-production data

historically, strange
to nonstrange ratio
$$\kappa = \frac{s + \bar{s}}{\bar{u} + \bar{d}}$$
$$\sim 0.2 - 0.5$$

... but uncertainty from K fragmentation functions?

Strange quarks

- Since SIDIS depends on both PDFs and fragmentation functions, need to fit both kinds of distributions <u>simultaneously</u>!
 - → JAM2019 analysis
 - \rightarrow unpolarized fixed-target DIS on p, d (SLAC, BCDMS, NMC), HERA collider data (runs I & II)

PDFs

FFs

- → Drell-Yan (Fermilab E866), jet production (CDF, D0)
- \rightarrow SIDIS pion & kaon multiplicities for deuteron (COMPASS)
- $\rightarrow e^+e^-$ annihilation (DESY, LEP/CERN, SLAC, KEK)
- 52 shape parameters + 41 "nuisance" parameters for systematic uncertainties (data normalizations)
- 953 fits to 4366 data points (2680 DIS, 992 SIDIS, 250 DY, 444 SIA)
 → such an analysis has never been attempted before...

 \rightarrow valence & light sea quark broadly in agreement with other groups

→ <u>suppression of strange</u> PDF compared to other extraction

 \rightarrow SIDIS + SIA data force strange to kaon FF to be larger

solutions with large s(x)fully constrained solutions

→ vital role played by SIDIS + SIA data in constraining strange PDF

Strange quarks

- Parity-violating DIS measurements (e.g. SoLID at JLab12) will allow strange contribution to be isolated, when combined with e.m. p and n DIS data at low/intermediate x
 - \rightarrow at leading order

$$F_2^{\gamma p} = \frac{4}{9}x(u+\bar{u}) + \frac{1}{9}x(d+\bar{d}+s+\bar{s}) + \cdots$$

 $F_2^{\gamma n} = \frac{4}{9}x(d+\bar{d}) + \frac{1}{9}x(u+\bar{u}+s+\bar{s}) + \cdots$

$$F_2^{\gamma Z,p} = \left(\frac{1}{3} - \frac{8}{9}\sin^2\theta_W\right) x(u+\bar{u}) + \left(\frac{1}{6} - \frac{2}{9}\sin^2\theta_W\right) (d+\bar{d}+s+\bar{s}) + \cdots$$
$$\approx \frac{1}{9}x(u+\bar{u}+d+\bar{d}+s+\bar{s}) + \cdots \text{ for } \sin^2\theta_W \approx 1/4$$

- \rightarrow 3 equations with 3 unknowns; order of magnitude greater sensitivity of γZ to strange PDF
- \rightarrow V x A term also sensitive to $s \bar{s}$

$$F_3^{\gamma Z,p} = \frac{2}{3}(u - \bar{u}) + \frac{1}{3}(d - \bar{d} + s - \bar{s}) + \cdots$$

Nucleon helicity PDFs

- Jefferson Lab Angular Momentum Collaboration began ~ 2013 as an attempt to coordinate JLab spin structure function analysis across Halls A, B & C
- With fewer data and smaller kinematic reach, soon realized that a Monte Carlo sampling approach was needed
 - → de-correlate starting and final fit parameters, avoid getting stuck in local χ^2 minima
 - \rightarrow MC analysis spearheaded by Nobuo Sato

First application of JAM MC — spin structure

First JAM MC analysis studied impact of JLab data on spin structure of the nucleon

Sato, WM, Kuhn, Ethier, Accardi (2016)

- → inclusion of JLab data increases # data points by factor ~ 2
- → reduced uncertainty in Δs^+ , Δg through Q^2 evolution
- <u>s-quark polarization negative</u>
 from inclusive DIS data
 (assuming SU(3) symmetry)

First application of JAM MC — spin structure

Inclusive DIS data cannot distinguish between q and \overline{q}

- → 2 observables (g_1^p, g_1^n) can determine up to 2 unknowns, e.g. $\Delta u + \Delta \bar{u}, \Delta d + \Delta \bar{d}$ — sea quarks from Q^2 dependence
- $\rightarrow \text{ semi-inclusive DIS sensitive to } \Delta q \& \Delta \bar{q} \\ \sim \sum_{q} e_q^2 \left[\Delta q(x) D_q^h(z) + \Delta \bar{q}(x) D_{\bar{q}}^h(z) \right] \\ \swarrow \qquad \uparrow^{fragmentation functions}$

Global analysis of DIS + SIDIS data gives different sign for strange quark polarization for different fragmentation functions!

 $\rightarrow \Delta s > 0$ for "DSS" FFs, <u>but</u> $\Delta s < 0$ for "HKNS" FFs

→ necessity to fit fragmentation functions simultaneously with PDFs...

First application of JAM MC — spin structure

■ Analysis of single-inclusive e^+e^- annihilation data for π , K production (from DESY, CERN, SLAC & KEK) from $Q \sim 10$ GeV to M_Z

Ethier, Sato, WM (2017)

- \rightarrow favored $u^+ = u + \bar{u} \& s^+ = s + \bar{s}$ FFs well constrained
- → larger $s \to K$ fragmentation cf. HKNS suggests less negative Δs

Simultaneous spin PDF + FF analysis

First simultaneous extraction of spin PDFs and FFs, fitting polarized DIS + SIDIS (HERMES, COMPASS) and SIA data

Simultaneous spin PDF + FF analysis

■ Polarized strangeness in previous, DIS-only analyses was negative at $x \sim 0.1$, induced by SU(3) and parametrization bias

Ethier, Sato, WM (2017)

- \rightarrow weak sensitivity to Δs^+ from DIS data & evolution
 - SU(3) pulls Δs^+ to generate moment ~ -0.1
 - negative peak at $x \sim 0.1$ induced by fixing $b \sim 6 8$

Simultaneous spin PDF + FF analysis SIDIS data, especially for *K* production, clearly prefer a less negative Δs

Ethier, Sato, WM (2017)

Simultaneous spin PDF + FF analysis

Statistical distribution of lowest moments (axial charges)

- \rightarrow triplet charge g_A consistent with SU(2) value
- \rightarrow hint of SU(3) breaking in octet charge a_8 Bass, Thomas (2010)
- \rightarrow less negative $\Delta s = -0.03(10)$ gives larger total helicity $\Delta \Sigma = 0.36(9)$

JAM-lattice

PDFs in lattice QCD

Recent progress in extracting x dependence of PDFs in lattice QCD from matrix element of nonlocal operator

 $h(z, P_z) = \langle P | \overline{\psi}(0, z) \gamma_z \mathcal{W}(z, 0) \psi(0, 0) | P \rangle$

$$= \int_{-\infty}^{\infty} dy \ e^{iyP_z z} \ \widetilde{q}(y, P_z)$$

 \rightarrow quasi-PDF \tilde{q} related to light-cone PDF via matching kernel \tilde{C}

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} \ \widetilde{C}\left(\frac{x}{y},\mu,P_z\right) \ \widetilde{q}(y,P_z,\mu)$$

Conflicting results on sign of $\overline{d} - \overline{u}$ asymmetry

PDFs in lattice QCD

■ Fit lattice observable directly within JAM framework

→ cannot determine $\overline{d} - \overline{u}$ from present lattice data

PDFs in lattice QCD

■ Fit lattice observable directly within JAM framework

 better agreement between lattice and experiment for polarized PDFs (within larger uncertainties)

JAM-pion

MC analysis combining pQCD with chiral EFT to fit πN Drell-Yan + leading neutron electroproduction data from HERA

Larger gluon fraction in the pion than without LN constraint

Barry, Sato, WM, C.-R. Ji (2018)

MC analysis combining pQCD with chiral EFT to fit πN Drell-Yan + leading neutron electroproduction data from HERA

- Provides new insights into the origin of the $\overline{d} \overline{u}$ asymmetry in the proton
 - chiral effective theory relates asymmetry to structure of pion

$$\frac{\pi^{+}}{p - n} \quad (\bar{d} - \bar{u})(x) = \int \frac{dy}{y} f_{\pi^{+}n}(y) \,\bar{q}^{\pi}(x/y)$$

Barry, Sato, WM, C.-R. Ji (2018)

 \blacksquare $x \rightarrow 1$ behavior of pion PDF is controversial: $\sim (1-x)$ or $(1-x)^2$?

■ Hard scattering coefficient function kinematically enhanced when $z \rightarrow 1$ because of gluon emissions

Patrick Barry et al. (2019)

→ effect of resummation on phenomenology?

- New analysis examines whether large- q_T DY data can be simultaneously described with q_T -integrated DY + HERA LN data
 - → large-q_T photon requires hard gluon to recoil against — sensitivity to <u>gluon PDF</u> in pion at <u>large x</u>!

Nina Cao et al. (2019)

→ first time that one has been able to describe q_T spectra (q_T > 2.9 GeV) spectra in terms of collinear PDFs!

Outlook

- New paradigm in global analysis <u>simultaneous</u> determination of collinear distributions (unpolarized & polarized PDFs and FFs) using Monte Carlo sampling of parameter space
- Technology developed in collinear sector will be applied to global QCD analysis of transverse momentum dependent (TMD) distributions — map out full 3-d image of nucleon
- Incorporate new tools/technologies, e.g., machine learning

 LDRD ("Empirically Trained Hadronic Event Regenerator") and
 CNF ("QCD theory and machine learning for global analysis") projects
 collaboration with computer science/AI researchers