

EMC ratios in Lighter Nuclei

Abishek Karki MISSISSIPPI STATE

> Hall C – 2020 Jan 28-29

This research is supported by U.S. DOE Grant Number: DE-FGO2ER41528

Introduction:

- European Muon Collaboration investigated Deep Inelastic Scattering (DIS) of muons on H, D, Fe
- Structure Function:
 - Naive Expected: $F_{2}^{A}(x) = ZF_{2}^{p}(x) + NF_{2}^{n}(x)$
 - Structure fns related to quark distribution
- Experiment concluded $\sigma_A/\sigma_D \neq 1$
- EMC is measure of medium modification of quark distribution

Intro.....

Nuclear dependence

SLAC E139 studied the nuclear dependence of the EMC effect at fixed x

Results:

- Simple logarithmic A dependence
- → Average nuclear density

Motivation

Jlab E03-103

Results from JLab suggest that EMC Effect does not scale with average nuclear density

Measured $\sigma_A^{\sigma_D}$ for ³He, ⁴He, Be, C

- ³He, ⁴He, C EMC effect scales well with density
- Be does not fit the trend

EMC effect and Local Nuclear density

⁹Be has low average density

- Large component of structure is $2\alpha {+}n$
- Most nucleons in tight, α -like configuration

EMC effect is driven by **local** rather than *average density*

HallC-2020

SRCs And Nuclear Density

SRC (Short Range Correlation) is configuration when two nucleons come very close and act like a correlated pair such that they are heavily modified.

Common Nuclear Dependence

HallC-2020

SRCs And the EMC

This result provides a quantitative test of level of correlation between the two effects.

Hall C: SHMS & HMS

SHMS

- HB,3Quads, Dipole
- P→ 2-11 GeV
- Resolution: δ < 0.2%
- Acceptance 30%,4msr
- $5.5^{\circ} < \theta < 40^{\circ}$

HMS

- 3 Quads, Dipole
- **P**→ **7.5 GeV**
- Resolution: δ <0.1%
- Acceptance 18%,6.5msr
- $10.5^{\circ} < \theta < 90^{\circ}$

Detector Package:

- Drift Chamber
- Hodoscopes
- Cerenkovs
- Calorimeter

Rigid support Structure

E12-10-008: Setup & Kinematics

- > Ran with E12-10-002 (f_2) as a part of commissioning experiment.
- > 2 PAC Days were used
- Both spectrometers were used for measurement
- Beam 10.6 GeV, unpolarized
- > Targets : ¹H,²H,⁹Be,^{10,11}B,¹²C were taken at 21^o
 - Only ¹²C was taken at larger angle to look at Q² dependence of EMC Effect

First measurement of the EMC effect in^{× 10,11}B HallC-2020

HMS Ω²(GeV²)

Q²(GeV²)

Phase I Spring 2018

Analysis Workflow

- Timing cuts
- Detector calibration
 - BCM (Deb's Talk)
 - Hodoscope
 - Drift Chamber
 - Calorimeter (Abel's Talk)
 - Cherenkov (Abel's Talk)

- Efficiency Studies
 - Tacking Efficiency
 - Trigger Efficiency
 - Computer Dead Time
 - Calorimeter & Cherenkov Cut Efficiency
- Charge Symmetric Background (Abel's Talk)
- Acceptance Study (Abel and Aruni Talk)
- Radiative Correction
- Ratios Calculation

Analysis Status

- Detector calibrations complete.
- Working on extracting the experimental efficiencies and understanding the SHMS acceptance.
- Extraction of raw EMC ratios is currently ongoing.
- Detailed Data/Monte-Carlo comparisons is in progress.
- Carbon ratio looks roughly as expected.
- Need to work on subtraction/modeling of charge symmetric background and radiative corrections.

Timing Cuts

First step in the analysis, is to set proper

reference time cuts and TDC & ADC

timing cuts for "good" hit selection.

(Detectors have capability to accept

multi-hits.)

- We look for patterns when we have more than one hit: how often it comes with low-low, low-high and high-high amplitude. Most events with multiplicity greater than one have low-high pattern.
- We select hits based on timing but also based amplitude.

SHMS Drift Chambers : Calibration and resolution

It is a detector used to determine the position of the particle and hence the trajectory.

- TDC values from all of the wire in a given plane for a large no of events is taken to obtain a drift time distribution which is then averaged over all the wire of a plane to form a drift time distribution per plane.
- "t₀" offset is calculated for each plane.
- Makes a look up table to convert drift time to drift distance.

• Residual is the difference between the final track position and the hit location obtained from individual drift chamber planes.

SHMS Calorimeter Cut Efficiency

- Difficult to extract efficiency from Inelastic data set.
 - (Hard to make pure electron sample just using Cherenkov)
- Obtaining efficiency from Elastic run

Efficiency = did/should

Should cut = $-10 < delta < 22 & \& \\ ngc > 10 & \& \& \\ 0.9 < W2 < 1.1 & \& \& \\ 0.8 < beta < 1.2 & \& \& \\ ntrack ==1 & \& \& \\ oktrack ==1 & \& \& \\ dipoleExit==1 & \& \& \\ ^{3}/_{4} and stof$

Did cut = Should && cal>
$$0.7$$

From elastic run

HallC-2020

SHMS NGCER Cut Efficiency

1. Definition:

- $eff = \frac{npe>2 \&\& clean sample of electron}{clean sample of electron}$
- 2. Using hydrogen elastic run (8.34 GeV).

1.02

1.01

0.99

0.98 0.97

0.96

++++

• Look up table generate from our production run (LH₂, 5.1 GeV at 21°) binned in x and y.

• Use this look up table for efficiency for our data set.

Note: Blue points are from look up table and black are data points.

- Plotted average efficiency across the momentum from elastic run
- Too small to claim momentum dependence

Data to Monte - Carlo Comparison

$C^{12} \,at \, 5.1 GeV, \, 21^{0}$

- Integral Difference between Data and Monte - Carlo ~ 5%
- + Understanding on shape of Y_{tar} and Y $_{tar}^{p}$
- No Charge Symmetric background correction
- No Detector efficiency correction.

Data to Monte - Carlo Comparison

C^{12} at 5.1GeV, 21^o

Preliminary Ratio of Charged Normalized Yield

- Yields binned in x_{bj}
- Very raw ratio extraction
- Except for target thickness correction, no other corrections are applied
- Mis-match likely due to resolution, acceptance differences

E12-10-008: Projection

E12-10-008, in combination with X>1 will provide:

- EMC ratios for Be, ¹⁰B, ¹¹B, C
- a2 ratios for same nuclei
- New information for EMC-SRC correlation

Courtesy plot from D. Gaskell

Detailed Studies of the nuclear dependence of F2 in light nuclei **Full Phase** [E12-100-008: J. Arrington, A Daniel, N. Fomin, D. Gaskell]

- EMC effect demonstrates that quarks are modified in the nucleus
- E12-00-008 will provide a new data on several nuclei
- Provides first EMC measurements on ^{10}B and ^{11}B
- Only initial stages of ratio extraction

Thank you for your attention

BACK UP SLIDE

Trigger Efficiency

• All our data was taken with EL REAL trigger

3/4

HallC-2020

 $\sum_{3/4} * \Sigma_{PRHI}$

Here I am looking at relative trigger efficient

WHY EMC in new Nuclear Target ^{10, 11}B?

Expected

WHY EMC in new Nuclear Target ^{10, 11}B?

Expected

• Rule out the hypothesis that EMC effect is govern by Local density.